Die Varianzanalyse ist ein Verfahren, welches die Wirkung einer (oder mehrerer) unabhängiger Variablen auf eine (oder mehrere) abhängige Variablen untersucht. Für die unabhängigen Variablen, die auch als Faktoren oder Treatments bezeichnet werden, wird dabei lediglich eine nominale Skalierung verlangt, während die abhängige Variable (auch Zielvariable genannt) metrisch skaliert ist. Die Varianzanalyse ist das wichtigste multivariate Verfahren zur Aufdeckung von Mittelwertunterschieden über mehr als zwei Gruppen hinweg und dient damit insbesondere der Auswertung von Experimenten. Das Kapitel behandelt sowohl die einfaktorielle (eine abhängige und eine unabhängige Variable) als auch die zweifaktorielle (eine abhängige Variable und zwei unabhängige Variablen) Varianzanalyse und erweitert die Betrachtungen im Fallbeispiel auf die Analyse mit zwei unabhängigen Faktoren (nominal skaliert) und zwei (metrisch skalierten) Kovariaten. Darüber hinaus werden auch die Kontrastanalyse und der Post hoc-Test behandelt.
Anzeige
Bitte loggen Sie sich ein, um Zugang zu Ihrer Lizenz zu erhalten.
Es wird in diesem Fall von der „Inferenzstatistik“ gesprochen, die von der deskriptiven Statistik zu unterscheiden ist. Die Inferenzstatistik macht Rückschlüsse und Vorhersagen über eine Population auf der Grundlage einer aus der untersuchten Grundgesamtheit gezogenen Stichprobe.
Im Anwendungsbeispiel wurden bewusst nur 5 Beobachtungen pro Gruppe und damit insgesamt 15 Beobachtungen gewählt, um die nachfolgenden Berechnungen leichter nachvollziehen zu können. In der Literatur wird meist eine Anzahl von mindestens 20 Beobachtungen pro Gruppe empfohlen.
Auf der zu diesem Buch gehörigen Internetseite www.multivariate.de stellen wir ergänzendes Material zur Verfügung, um das Verstehen der Methode zu erleichtern und zu vertiefen.
Der Anwender kann auch andere Werte für α verwenden. Allerdings ist α = 5 % eine Art „Gold“-Standard in der Statistik, der auf R. A. Fisher (1890 – 1962) zurückgeht, der auch die F-Verteilung entwickelt hat. Allerdings muss der Anwender auch die Folgen (Kosten) einer Fehlentscheidung bei der Entscheidung berücksichtigen.
Der p-Wert kann auch mit Hilfe von Excel durch Verwendung der Funktion F.VERT.RE (Femp; df1;df2) berechnet werden. Für das Anwendungsbeispiel erhält man: F.VERT.RE(38,09;2; 12) = 0,0000064 oder 0,00064 %. Eine detaillierte Erläuterung zum p-Wert findet der Leser auch in Abschn. 1.3.1.2.
Hinweise zur Prüfung der Annahme multivariater Normalverteilung werden in Abschn. 3.5 gegeben. Eine detallierte Darstellung zur Prüfung von Varianzhomogenität mit dem Levene-Test findet der Leser in Abschn. 3.4.3.
Der Alpha-Fehler spiegelt die Wahrscheinlichkeit wider, die Nullhypothese abzulehnen, obwohl sie wahr ist. Vgl. zum Fehler erster und zweiter Art die Ausführungen zum statistischen Testen in Abschn. 1.3.
Auch hier sei nochmals darauf hingewiesen, dass die Zahl von 5 Beobachtungen pro Gruppe und damit insgesamt 30 Beobachtungen bewusst gewählt wurde, um die nachfolgenden Berechnungen leichter nachvollziehen zu können. In der Literatur wird meist eine Anzahl von mindestens 20 Beobachtungen pro Gruppe bei einer zweifaktoriellen ANOVA empfohlen.
Im Folgenden werden die drei allgemeinen Formen der Interaktion graphisch verdeutlicht. Die Interaktionseffekte im Anwendungsbeispiel entsprechen denen im Fallbeispiel und sind in Abb. 3.15 dargestellt und erläutert.
Im Fallbeispiel werden aus didaktischen Gründen nochmals die Daten des erweiterten Anwendungsbeispiels verwendet (vgl. Abschn. 3.2.2.1; Tab. 3.9). Deshalb ist auch hier darauf hinzuweisen, dass das Fallbeispiel nur auf insgesamt 30 Fällen basiert. In der Literatur wird meist eine Anzahl von mindestens 20 Beobachtungen pro Gruppe empfohlen.
Tab. 3.14
Schokoladenabsatz in 15 Supermärkten nach Platzierung und Verpackung
Verpackung
Platzierung
Box
Papier
Süßwarenabteilung
SM 1
47
40
SM 2
39
39
SM 3
40
35
SM 4
46
36
SM 5
45
37
Sonderplatzierung
SM 6
68
59
SM 7
65
57
SM 8
63
54
SM 9
59
56
SM 10
67
53
Kassenplatzierung
SM 11
59
53
SM 12
50
47
SM 13
51
48
SM 14
48
50
SM 15
53
51
Auf der zu diesem Buch gehörigen Internetseite www.multivariate.de stellen wir ergänzendes Material zur Verfügung, um das Verstehen der Methode zu erleichtern und zu vertiefen.
Der p-Wert kann auch mit Hilfe von Excel durch Verwendung der Funktion F.VERT.RE (Femp; df1; df2) berechnet werden. Für das Anwendungsbeispiel in Abschn. 3.2.1.1 erhält man: F.VERT.RE(0,062;2;12) = 0,9402. Eine detaillierte Erläuterung zum p - Wert findet der Leser auch in Abschn. 13.1.2.