Skip to main content
Erschienen in:

17.06.2024 | Research

VEC Collaborative Task Offloading and Resource Allocation Based on Deep Reinforcement Learning Under Parking Assistance

verfasst von: Jianbin Xue, Fei Shao, Tingjuan Zhang, Guiying Tian, Hengjie Jiang

Erschienen in: Wireless Personal Communications | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the emergence of autonomous vehicles, meeting the vehicle’s computing needs for computationally intensive and latency-sensitive tasks has become a challenge. Cellular Vehicle-to-Everything (C-V2X), an essential Internet of Vehicles technology, is expected to be enhanced and strengthened in the 6G era to improve road traffic safety and realize intelligent transportation. However, when too many computationally intensive and latency-sensitive tasks of autonomous vehicles are offloaded to the MEC server, the server can become overloaded, unable to meet the offloading demands of numerous vehicles. Inspired by the idle parked cars on both sides of the road, this paper proposes utilizing idle vehicles to assist VEC servers in offloading computing tasks, thereby increasing resource capacity and expanding communication range. Therefore, this paper firstly utilizes roadside parked vehicles with idle computing resources as a task offloading platform to develop a mobile edge computing task offloading strategy based on roadside parked vehicle collaboration. Secondly, a more flexible offloading solution is proposed based on comprehensive consideration of offloading decisions and resource allocation in a multi-user and multi-server parked vehicle-assisted MEC environment. Subsequently, to ensure service quality for end users, we consider weighted total delay cost and energy consumption as optimization objectives. The optimization problem is further formulated as a Markov decision process, and a joint computing offloading and resource allocation optimization algorithm based on deep reinforcement learning is proposed to minimize the total delay and energy consumption of vehicle users. Finally, experimental results validate the algorithm. Compared with other benchmark solutions, the proposed scheme improves system performance by 78%, 77.3%, 72.7%, and 71.1%, respectively. The proposed scheme reduces the total system cost during task offloading and enhances system performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Al-Mayouf, Y. R. B., Abdullah, N. F., Mahdi, O. A., Khan, S., Ismail, M., Guizani, M., & Ahmed, S. H. (2018). Real-time intersection-based segment aware routing algorithm for urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2125–2141. https://doi.org/10.1109/TITS.2018.2823312CrossRef Al-Mayouf, Y. R. B., Abdullah, N. F., Mahdi, O. A., Khan, S., Ismail, M., Guizani, M., & Ahmed, S. H. (2018). Real-time intersection-based segment aware routing algorithm for urban vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 19(7), 2125–2141. https://​doi.​org/​10.​1109/​TITS.​2018.​2823312CrossRef
8.
Zurück zum Zitat Zhou, Z., Yu, H., Xu, C., Xiong, F., Jia, Y., & Li, G. (2017). Joint relay selection and spectrum allocation in D2D-based cooperative vehicular networks. In 2017 International conference on information and communication technology convergence (ICTC) (pp. 241–246). https://doi.org/10.1109/ICTC.2017.8190978 Zhou, Z., Yu, H., Xu, C., Xiong, F., Jia, Y., & Li, G. (2017). Joint relay selection and spectrum allocation in D2D-based cooperative vehicular networks. In 2017 International conference on information and communication technology convergence (ICTC) (pp. 241–246). https://​doi.​org/​10.​1109/​ICTC.​2017.​8190978
13.
Zurück zum Zitat Rahman, F. H., Iqbal, A. Y. M., Newaz, S. S., Wan, A. T., & Ahsan, M. S. (2019). Street parked vehicles based vehicular fog computing: TCP throughput evaluation and future research direction. In 2019 21st International conference on advanced communication technology (ICACT) (pp. 26–31). https://doi.org/10.23919/ICACT.2019.8701912 Rahman, F. H., Iqbal, A. Y. M., Newaz, S. S., Wan, A. T., & Ahsan, M. S. (2019). Street parked vehicles based vehicular fog computing: TCP throughput evaluation and future research direction. In 2019 21st International conference on advanced communication technology (ICACT) (pp. 26–31). https://​doi.​org/​10.​23919/​ICACT.​2019.​8701912
20.
22.
Zurück zum Zitat Du, T., Zhu, J., Liu, N., Cao, K., & Guo. (2022). Parking edge computing: Task offloading based on roadside parking in vehicle ad hoc networks. Journal of Chinese Computer Systems, 43(2), 416–421. Du, T., Zhu, J., Liu, N., Cao, K., & Guo. (2022). Parking edge computing: Task offloading based on roadside parking in vehicle ad hoc networks. Journal of Chinese Computer Systems, 43(2), 416–421.
34.
Metadaten
Titel
VEC Collaborative Task Offloading and Resource Allocation Based on Deep Reinforcement Learning Under Parking Assistance
verfasst von
Jianbin Xue
Fei Shao
Tingjuan Zhang
Guiying Tian
Hengjie Jiang
Publikationsdatum
17.06.2024
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2024
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11258-1