Skip to main content

2016 | OriginalPaper | Buchkapitel

15. Vent Flows

verfasst von : Takeyoshi Tanaka

Erschienen in: SFPE Handbook of Fire Protection Engineering

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fire releases a great amount of heat that causes the heated gas to expand. The expansion produced by a fire in a room drives some of the gas out of the room. Any opening through which gas can flow out of the fire room is called a vent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Glossar
Nomenclature
A
Area (m2)
a
Length (m)
b
Width (m)
C
Flow coefficient (−)
c p
Specific heat at constant pressure (kJ/kg K)
c v
Specific heat at constant volume (kJ/kg K)
D
Orifice diameter (m)
Fr
Froude number (−)
g
Gravity constant (m/s2)
Gr
Grashof number (−)
h
Height (m)
[J]
Jacobian matrix
L
Orifice length (m)
M
Molecular weight (kg/kg mol)
Mass flow rate (kg/s)
P
Perimeter (m)
p
Pressure (Pa)
\( \dot{Q} \)
Heat release rate of fire source (kW)
\( \dot{Q}{}_h \)
Heat loss by heat transfer (kW)
R
Gas constant (J/kg mol K)
Re
Reynolds number (−)
T
Temperature (K)
u
Velocity (m/s)
V
Volume (m3)
\( \dot{V} \)
Volume flow rate (m3/s)
V R
Room volume (m3)
y
Vertical coordinate (m)
α K
Effective heat transfer coefficient (kW/m2K)
Δ
Increment of
δ
Depth (see Fig. 15.6) (m)
γ = c p /c v
Isentropic exponent (−)
Π
Non-dimensional pressure (−)
ρ
Density (kg/m3)
μ
Viscosity (Ns/m2)
Subscripts
a
Atmosphere
b
Sill of vent
c
Ceiling of room
d
Lower
f
Floor
g
Gauge
i
Hot-cold interface
ij
From room (layer) i to room (layer) j
j
Index of layer
L, l
Lower
n
Neutral axis
O2
Oxygen
t
Soffit of vent
u, U
Upper
v, V
Vent, in the vent
0
Reference height
1
Upstream of orifice
2
Downstream of orifice
Fußnoten
1
Equation 15.23 should be written u = (sign Δp)K \( \sqrt{\mathrm{T}\left|\Delta p\right|} \) since when Δ p  < 0 the absolute value must be used to avoid the square root of a negative number and the sign of the velocity changes since the flow is in and not out.
 
2
Sometimes the mean temperatures, \( \overline{T} \) of the two-layer model and the real flow are also used and both h n and T u are determined (using T d as above). The requirement of identical \( \overline{T} \) is arbitrary, sometimes leads to impractical results, and is not recommended.
 
Literatur
1.
Zurück zum Zitat H. Rouse, Fluid Mechanics for Hydraulic Engineers, McGraw-Hill, New York (1938). H. Rouse, Fluid Mechanics for Hydraulic Engineers, McGraw-Hill, New York (1938).
2.
Zurück zum Zitat Mark’s Mechanical Engineers Handbook, McGraw-Hill, New York (1958). Mark’s Mechanical Engineers Handbook, McGraw-Hill, New York (1958).
3.
Zurück zum Zitat J.S. Newman and P.A. Croce, Serial No. 21011.4, Factory Mutual Research Corp., Norwood, MA (1985). J.S. Newman and P.A. Croce, Serial No. 21011.4, Factory Mutual Research Corp., Norwood, MA (1985).
4.
Zurück zum Zitat D.J. McCaffrey and G. Heskestad, “Robust Bidirectional Low-Velocity Probe for Flame and Fire Application—Brief Communications,” Combustion and Flame, 26, pp. 125–127 (1976).CrossRef D.J. McCaffrey and G. Heskestad, “Robust Bidirectional Low-Velocity Probe for Flame and Fire Application—Brief Communications,” Combustion and Flame, 26, pp. 125–127 (1976).CrossRef
5.
Zurück zum Zitat J. Prahl and H.W. Emmons, “Fire Induced Flow Through an Opening,” Combustion and Flame, 25, pp. 369–385 (1975).CrossRef J. Prahl and H.W. Emmons, “Fire Induced Flow Through an Opening,” Combustion and Flame, 25, pp. 369–385 (1975).CrossRef
6.
Zurück zum Zitat K.D. Steckler, H.R. Baum, and J. Quintiere, 20th Symposium on Combustion, Pittsburgh, PA (1984). K.D. Steckler, H.R. Baum, and J. Quintiere, 20th Symposium on Combustion, Pittsburgh, PA (1984).
7.
Zurück zum Zitat J. Quintiere and K. DenBraven, NBSIR 78–1512, National Bureau of Standards, Washington, DC (1978). J. Quintiere and K. DenBraven, NBSIR 78–1512, National Bureau of Standards, Washington, DC (1978).
8.
Zurück zum Zitat H.E. Mitler and H.W. Emmons, NBS-GCR-81-344, National Bureau of Standards, Washington, DC (1981). H.E. Mitler and H.W. Emmons, NBS-GCR-81-344, National Bureau of Standards, Washington, DC (1981).
9.
Zurück zum Zitat M. Epstein, “Buoyancy-driven exchange flow through small openings in horizontal partition, with special reference to flows in multicompartment enclosures”, Journal of Heat Transfer, 110, pp.885–893 (1988) M. Epstein, “Buoyancy-driven exchange flow through small openings in horizontal partition, with special reference to flows in multicompartment enclosures”, Journal of Heat Transfer, 110, pp.885–893 (1988)
10.
Zurück zum Zitat Q. Tan and Y. Jaluria, NIST-G&R-92-607, National Institute of Standards and Technology, Gaithersburg, MD (1992). Q. Tan and Y. Jaluria, NIST-G&R-92-607, National Institute of Standards and Technology, Gaithersburg, MD (1992).
11.
Zurück zum Zitat Heiselberg, P. and Li, Z., (2007), "Experimental study of buoyancy driven natural ventilation through horizontal openings", Proceedings of Roomvent 2007 : Helsinki 13–15 June 2007.. Heiselberg, P. and Li, Z., (2007), "Experimental study of buoyancy driven natural ventilation through horizontal openings", Proceedings of Roomvent 2007 : Helsinki 13–15 June 2007..
12.
Zurück zum Zitat M. Epstein and M.A. Kenton, “Combined Natural Convection and Forced Flow Through Small Openings in a Horizontal Partition, with Special Reference to Flows in Multicompartment Enclosures,” Journal of Heat Transfer, 111, pp. 980–987 (1989).CrossRef M. Epstein and M.A. Kenton, “Combined Natural Convection and Forced Flow Through Small Openings in a Horizontal Partition, with Special Reference to Flows in Multicompartment Enclosures,” Journal of Heat Transfer, 111, pp. 980–987 (1989).CrossRef
13.
Zurück zum Zitat G. Heskestad and R. D. Spaulding, “Inflow of air required at wall and ceiling apertures to prevent escape of fire smoke”, Proceeding of the 3rd International Symposium on Fire Safety Science, pp.919–928 (1991) G. Heskestad and R. D. Spaulding, “Inflow of air required at wall and ceiling apertures to prevent escape of fire smoke”, Proceeding of the 3rd International Symposium on Fire Safety Science, pp.919–928 (1991)
14.
Zurück zum Zitat L. Y. Cooper, “Combined buoyancy- and pressure-driven flow through a shallow, horizontal, circular vent”, HTD-Vol. 299, Heat Transfer With Combined Modes, ASME, Chicago (1994). L. Y. Cooper, “Combined buoyancy- and pressure-driven flow through a shallow, horizontal, circular vent”, HTD-Vol. 299, Heat Transfer With Combined Modes, ASME, Chicago (1994).
15.
Zurück zum Zitat T. Tanaka, “A Model of Multiroom Fire Spread,” Fire Science and Technology, 3, p. 105 (1983).CrossRef T. Tanaka, “A Model of Multiroom Fire Spread,” Fire Science and Technology, 3, p. 105 (1983).CrossRef
16.
Zurück zum Zitat S. Yamada and T. Tanaka, “Reduced Scale Experiments for Convective Heat Transfer in the Early Stage of Fires,” International Journal on Engineering Performance-Based Codes, 1, 3, pp. 196–203 (1999). S. Yamada and T. Tanaka, “Reduced Scale Experiments for Convective Heat Transfer in the Early Stage of Fires,” International Journal on Engineering Performance-Based Codes, 1, 3, pp. 196–203 (1999).
17.
Zurück zum Zitat T. Tanaka and T. Yamana, “Smoke Control in Large Scale Spaces (Part 1, Analytic theories for simple smoke control problems),” Fire Science and Technology, 5, 1, pp. 31–40 (1985).CrossRef T. Tanaka and T. Yamana, “Smoke Control in Large Scale Spaces (Part 1, Analytic theories for simple smoke control problems),” Fire Science and Technology, 5, 1, pp. 31–40 (1985).CrossRef
18.
Zurück zum Zitat T. Tanaka, “Performance-Based Fire Safety Design Standards and FSE Tools for Compliance Verification,” International Journal on Engineering Performance-Based Codes, 1, 3, pp. 104–117 (1999). T. Tanaka, “Performance-Based Fire Safety Design Standards and FSE Tools for Compliance Verification,” International Journal on Engineering Performance-Based Codes, 1, 3, pp. 104–117 (1999).
19.
Zurück zum Zitat B.J. McCaffrey, J.G. Quintiere, and M.F. Herkeleroad, “Estimating Room Temperature and Likelihood of Flashover Using Fire Test Data Corrections,” Fire Technology, 17, 2, pp. 98–119 (1981).CrossRef B.J. McCaffrey, J.G. Quintiere, and M.F. Herkeleroad, “Estimating Room Temperature and Likelihood of Flashover Using Fire Test Data Corrections,” Fire Technology, 17, 2, pp. 98–119 (1981).CrossRef
20.
Zurück zum Zitat T. Tanaka and K. Nakamura, “A Model for Predicting Smoke Transport in Buildings,” Report of the Building Research Institute, No. 123, Ministry of Construction, Tsukuba, Japan (1989). T. Tanaka and K. Nakamura, “A Model for Predicting Smoke Transport in Buildings,” Report of the Building Research Institute, No. 123, Ministry of Construction, Tsukuba, Japan (1989).
21.
Zurück zum Zitat T. Tanaka and S. Yamada, “BRI2002: Two Layer Zone Smoke Transport Model,” Fire Science and Technology, 23, Special Issue (2004). T. Tanaka and S. Yamada, “BRI2002: Two Layer Zone Smoke Transport Model,” Fire Science and Technology, 23, Special Issue (2004).
Metadaten
Titel
Vent Flows
verfasst von
Takeyoshi Tanaka
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2565-0_15