Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2020 | OriginalPaper | Buchkapitel

29. Vergleichende Analyse der Word-Embedding-Verfahren Word2Vec und GloVe am Beispiel von Kundenbewertungen eines Online-Versandhändlers

verfasst von : Nils Horn, Michel Sebastian Erhardt, Manuel Di Stefano, Florian Bosten, Rüdiger Buchkremer

Erschienen in: Künstliche Intelligenz in Wirtschaft & Gesellschaft

Verlag: Springer Fachmedien Wiesbaden

Zusammenfassung

Um eine zielgerichtete Aussage zu Inhalten in Texten zu liefern, werden Bedeutungen von Wörtern als Vektoren dargestellt. Zur Vektorisierung, welche auch als „Word-Embedding-Verfahren“ bezeichnet werden, sind bereits existierende Verfahren zu überprüfen, denn die Wahl des Lernalgorithmus hat einen großen Einfluss auf die Genauigkeit des Gesamtanalyseergebnisses bei einer bestimmten Kategorie von Texten. Es wird beschrieben, wie die beiden populären Verfahren „Word2Vec“ und „GloVe“ für die Analyse von Online-Bewertungen konzipiert, implementiert und angewendet werden können. Eine quantitative Evaluation der Ergebnisse erfolgt auf Basis von Rezessionen des Versandhändlers Amazon.com. In einer abschließenden Diskussion sollen die Testergebnisse validiert und die Grenzen aufgezeigt werden.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aghahadi, Z., & Talebpour, A. (2018). Word embedding in small Corpora: A case study in Quran. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, S. 303–307. Aghahadi, Z., & Talebpour, A. (2018). Word embedding in small Corpora: A case study in Quran. In 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, S. 303–307.
Zurück zum Zitat Al-Amin, M., Islam, M. S., & Das Uzzal, S. (2017). Sentiment analysis of Bengali comments with Word2Vec and sentiment information of words. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, S. 186–190. Al-Amin, M., Islam, M. S., & Das Uzzal, S. (2017). Sentiment analysis of Bengali comments with Word2Vec and sentiment information of words. In 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, S. 186–190.
Zurück zum Zitat Alshahrani, H., Alzahrani, A., Alshehri, A., et al. (2017). Evaluation of gradient descent optimization: Using android applications in neural networks. In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, S. 1471–1476. Alshahrani, H., Alzahrani, A., Alshehri, A., et al. (2017). Evaluation of gradient descent optimization: Using android applications in neural networks. In 2017 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, S. 1471–1476.
Zurück zum Zitat Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual meeting of the association for computational linguistics. Association for computational linguistics, S. 238–247. Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don’t count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the 52nd annual meeting of the association for computational linguistics. Association for computational linguistics, S. 238–247.
Zurück zum Zitat Berardi, G., Esuli, A., & Marcheggiani, D. (2015). Word embeddings go to Italy: A comparison of models and training datasets. In Italian Information Retrieval Workshop, S. 1–8. Berardi, G., Esuli, A., & Marcheggiani, D. (2015). Word embeddings go to Italy: A comparison of models and training datasets. In Italian Information Retrieval Workshop, S. 1–8.
Zurück zum Zitat Bernier-Colborne, G., & Drouin, P. (2016). Evaluation of distributional semantic models: A holistic approach. In Proceedings of the 5th international workshop on computational technology. Association for computational linguistics, S. 52–61. Bernier-Colborne, G., & Drouin, P. (2016). Evaluation of distributional semantic models: A holistic approach. In Proceedings of the 5th international workshop on computational technology. Association for computational linguistics, S. 52–61.
Zurück zum Zitat Bhoir, S., Ghorpade, T., & Mane, V. (2017). Comparative analysis of different word embedding models. In 2017 International Conference on Advances in Computing, Communication and Control (ICAC3). IEEE, S. 1–4. Bhoir, S., Ghorpade, T., & Mane, V. (2017). Comparative analysis of different word embedding models. In 2017 International Conference on Advances in Computing, Communication and Control (ICAC3). IEEE, S. 1–4.
Zurück zum Zitat Bruni, E., Uijlings, J., Baroni, M., & Sebe, N. (2012). Distributional semantics with eyes. In Proceedings of the 20th ACM international conference on Multimedia – MM ’12. ACM Press, New York, New York, USA, S. 1219. Bruni, E., Uijlings, J., Baroni, M., & Sebe, N. (2012). Distributional semantics with eyes. In Proceedings of the 20th ACM international conference on Multimedia – MM ’12. ACM Press, New York, New York, USA, S. 1219.
Zurück zum Zitat Chaitanya, I., Madapakula, I., Gupta, S. K., & Thara, S. (2018). Word level language identification in code-mixed data using word embedding methods for Indian languages. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, S. 1137–1141. Chaitanya, I., Madapakula, I., Gupta, S. K., & Thara, S. (2018). Word level language identification in code-mixed data using word embedding methods for Indian languages. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, S. 1137–1141.
Zurück zum Zitat Chang, C.-Y., Lee, S.-J., & Lai, C.-C. (2017). Weighted word2vec based on the distance of words. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, S. 563–568. Chang, C.-Y., Lee, S.-J., & Lai, C.-C. (2017). Weighted word2vec based on the distance of words. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, S. 563–568.
Zurück zum Zitat Chilimbi, T., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project Adam: Building an efficient and scalable deep learning training system. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, Broomfield, S. 571–582. Chilimbi, T., Suzue, Y., Apacible, J., & Kalyanaraman, K. (2014). Project Adam: Building an efficient and scalable deep learning training system. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation. USENIX Association, Broomfield, S. 571–582.
Zurück zum Zitat Chiu, B., Crichton, G., Korhonen, A., & Pyysalo, S. (2016). How to train good word embeddings for biomedical NLP. In Proceedings of the 15th workshop on biomedical natural language processing. Association for computational linguistics, S. 166–174. Chiu, B., Crichton, G., Korhonen, A., & Pyysalo, S. (2016). How to train good word embeddings for biomedical NLP. In Proceedings of the 15th workshop on biomedical natural language processing. Association for computational linguistics, S. 166–174.
Zurück zum Zitat Chowdhury, H. A., Imon, M. A. H., & Islam, M. S. (2018). A comparative analysis of word embedding representations in authorship attribution of Bengali literature. In 2018 21st International Conference of Computer and Information Technology (ICCIT). IEEE, S. 1–6. Chowdhury, H. A., Imon, M. A. H., & Islam, M. S. (2018). A comparative analysis of word embedding representations in authorship attribution of Bengali literature. In 2018 21st International Conference of Computer and Information Technology (ICCIT). IEEE, S. 1–6.
Zurück zum Zitat Dekhtyar, A., & Fong, V. (2017). RE data challenge: Requirements identification with Word2Vec and TensorFlow. In 2017 IEEE 25th international Requirements Engineering conference (RE). IEEE, S. 484–489. Dekhtyar, A., & Fong, V. (2017). RE data challenge: Requirements identification with Word2Vec and TensorFlow. In 2017 IEEE 25th international Requirements Engineering conference (RE). IEEE, S. 484–489.
Zurück zum Zitat Dodal, S. S., & Kulkarni, P. V. (2018). Multi-lingual information retrieval using deep learning. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, S. 1–6. Dodal, S. S., & Kulkarni, P. V. (2018). Multi-lingual information retrieval using deep learning. In 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). IEEE, S. 1–6.
Zurück zum Zitat Du, X., Zheng, Z., Xiao, G., & Yin, B. (2017). The automatic classification of fault trigger based bug report. In 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, S. 259–265. Du, X., Zheng, Z., Xiao, G., & Yin, B. (2017). The automatic classification of fault trigger based bug report. In 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, S. 259–265.
Zurück zum Zitat Fahad, S. A., & Yahya, A. E. (2018). Inflectional review of deep learning on natural language processing. In 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). IEEE, S. 1–4. Fahad, S. A., & Yahya, A. E. (2018). Inflectional review of deep learning on natural language processing. In 2018 International Conference on Smart Computing and Electronic Enterprise (ICSCEE). IEEE, S. 1–4.
Zurück zum Zitat Ge, L., & Moh, T.-S. (2017). Improving text classification with word embedding. In 2017 IEEE international conference on big data (Big Data). IEEE, S. 1796–1805. Ge, L., & Moh, T.-S. (2017). Improving text classification with word embedding. In 2017 IEEE international conference on big data (Big Data). IEEE, S. 1796–1805.
Zurück zum Zitat Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345–420. CrossRef Goldberg, Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence Research, 57, 345–420. CrossRef
Zurück zum Zitat Grawe, M. F., Martins, C. A., & Bonfante, A. G. (2017). Automated patent classification using word embedding. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, S. 408–411. Grawe, M. F., Martins, C. A., & Bonfante, A. G. (2017). Automated patent classification using word embedding. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, S. 408–411.
Zurück zum Zitat Gupta, A., & Tripathy, B. K. (2017). Implementing GloVe for context based k-means++ clustering. In 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, S. 1041–1046. Gupta, A., & Tripathy, B. K. (2017). Implementing GloVe for context based k-means++ clustering. In 2017 International Conference on Intelligent Sustainable Systems (ICISS). IEEE, S. 1041–1046.
Zurück zum Zitat Hellrich, J., & Hahn, U. (2016). Bad company-neighborhoods in neural embedding spaces considered harmful. In Proceedings of COLING 2016, the 26th international conference on computational linguistics. association for computational linguistics, S. 2785–2796. Hellrich, J., & Hahn, U. (2016). Bad company-neighborhoods in neural embedding spaces considered harmful. In Proceedings of COLING 2016, the 26th international conference on computational linguistics. association for computational linguistics, S. 2785–2796.
Zurück zum Zitat Islam, M. S., Amin, M. A., & Das Uzzal, S. (2016). Word embedding with hellinger PCA to detect the sentiment of bengali text. In 2016 19th International Conference on Computer and Information Technology (ICCIT). IEEE, S. 363–366. Islam, M. S., Amin, M. A., & Das Uzzal, S. (2016). Word embedding with hellinger PCA to detect the sentiment of bengali text. In 2016 19th International Conference on Computer and Information Technology (ICCIT). IEEE, S. 363–366.
Zurück zum Zitat Jettakul, A., Thamjarat, C., Liaowongphuthorn, K., et al. (2018). A comparative study on various deep learning techniques for Thai NLP lexical and syntactic tasks on noisy data. In 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, S. 1–6. Jettakul, A., Thamjarat, C., Liaowongphuthorn, K., et al. (2018). A comparative study on various deep learning techniques for Thai NLP lexical and syntactic tasks on noisy data. In 2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, S. 1–6.
Zurück zum Zitat Jin, X., Zhang, S., & Liu, J. (2018). Word semantic similarity calculation based on Word2vec. In 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, S. 12–16. Jin, X., Zhang, S., & Liu, J. (2018). Word semantic similarity calculation based on Word2vec. In 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). IEEE, S. 12–16.
Zurück zum Zitat Katic, T., & Milicevic, N. (2018). Comparing sentiment analysis and document representation methods of amazon reviews. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY). IEEE, S. 283–286. Katic, T., & Milicevic, N. (2018). Comparing sentiment analysis and document representation methods of amazon reviews. In 2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY). IEEE, S. 283–286.
Zurück zum Zitat Lauren, P., Qu, G., Huang, G.-B., et al. (2017). A low-dimensional vector representation for words using an extreme learning machine. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, S. 1817–1822. Lauren, P., Qu, G., Huang, G.-B., et al. (2017). A low-dimensional vector representation for words using an extreme learning machine. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, S. 1817–1822.
Zurück zum Zitat Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings ofthe 52nd annual meeting ofthe association for computational linguistics (Short papers), S. 302–308. Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In Proceedings ofthe 52nd annual meeting ofthe association for computational linguistics (Short papers), S. 302–308.
Zurück zum Zitat Li, S., Chua, T.-S., Zhu, J., & Miao, C. (2016). Generative topic embedding: A continuous representation of documents. In Proceedings of the 54th annual meeting of the association for computational linguistics. Association for computational linguistics, S. 666–675. Li, S., Chua, T.-S., Zhu, J., & Miao, C. (2016). Generative topic embedding: A continuous representation of documents. In Proceedings of the 54th annual meeting of the association for computational linguistics. Association for computational linguistics, S. 666–675.
Zurück zum Zitat Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and Word2vec for text classification with semantic features. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, S. 136–140. Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and Word2vec for text classification with semantic features. In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, S. 136–140.
Zurück zum Zitat Ling, Y., An, Y., Liu, M., et al. (2017). Integrating extra knowledge into word embedding models for biomedical NLP tasks. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, S. 968–975. Ling, Y., An, Y., Liu, M., et al. (2017). Integrating extra knowledge into word embedding models for biomedical NLP tasks. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, S. 968–975.
Zurück zum Zitat Manna, S., & Nakai, H. (2019). Effectiveness of word embeddings on classifiers: A case study with tweets. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC). IEEE, S. 158–161. Manna, S., & Nakai, H. (2019). Effectiveness of word embeddings on classifiers: A case study with tweets. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC). IEEE, S. 158–161.
Zurück zum Zitat Manning, C. D., Surdeanu, M., Bauer, J., et al. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: System demonstrations, S. 55–60. Manning, C. D., Surdeanu, M., Bauer, J., et al. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguistics: System demonstrations, S. 55–60.
Zurück zum Zitat Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. In Proceedings of ICLR Workshop, S. 1–11. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word representations in vector space. In Proceedings of ICLR Workshop, S. 1–11.
Zurück zum Zitat Mikolov, T., Sutskever, I., Chen, K., et al. (2013b). Distributed representations of words and phrases and their com.positionality. Advances in Neural Information Processing Systems, 3111–3119. Mikolov, T., Sutskever, I., Chen, K., et al. (2013b). Distributed representations of words and phrases and their com.positionality. Advances in Neural Information Processing Systems, 3111–3119.
Zurück zum Zitat Mikolov, T., Yih, W.-T., & Zweig, G. (2013c). Linguistic regularities in continuous space word representations. In Proceedings of NAACL-HLT. Association for computational linguistics, Atlanta, Georgia, S. 746–751. Mikolov, T., Yih, W.-T., & Zweig, G. (2013c). Linguistic regularities in continuous space word representations. In Proceedings of NAACL-HLT. Association for computational linguistics, Atlanta, Georgia, S. 746–751.
Zurück zum Zitat Mori, Y., & Satoh, S. (2018). Co-cleansing of image and text dataset by automatic image annotation and proper noun analysis. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). IEEE, S. 485–487. Mori, Y., & Satoh, S. (2018). Co-cleansing of image and text dataset by automatic image annotation and proper noun analysis. In 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE). IEEE, S. 485–487.
Zurück zum Zitat Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. AISTATS, S. 246–252. Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. AISTATS, S. 246–252.
Zurück zum Zitat O’Mahony, M. P., Cunningham, P., & Smyth, B. (2010). An assessment of machine learning techniques for review recommendation. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), S. 241–250. O’Mahony, M. P., Cunningham, P., & Smyth, B. (2010). An assessment of machine learning techniques for review recommendation. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), S. 241–250.
Zurück zum Zitat Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In EMNLP 2014 – 2014 Conference on empirical methods in natural language processing, proceedings of the conference. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. In EMNLP 2014 – 2014 Conference on empirical methods in natural language processing, proceedings of the conference.
Zurück zum Zitat Putra, Y. A., & Khodra, M. L. (2016). Deep learning and distributional semantic model for Indonesian tweet categorization. In 2016 International Conference on Data and Software Engineering (ICoDSE). IEEE, S. 1–6. Putra, Y. A., & Khodra, M. L. (2016). Deep learning and distributional semantic model for Indonesian tweet categorization. In 2016 International Conference on Data and Software Engineering (ICoDSE). IEEE, S. 1–6.
Zurück zum Zitat Rodriguez, D. V., Carver, D. L., & Mahmoud, A. (2018). An efficient wikipedia-based approach for better understanding of natural language text related to user requirements. In 2018 IEEE Aerospace Conference. IEEE, S. 1–16. Rodriguez, D. V., Carver, D. L., & Mahmoud, A. (2018). An efficient wikipedia-based approach for better understanding of natural language text related to user requirements. In 2018 IEEE Aerospace Conference. IEEE, S. 1–16.
Zurück zum Zitat Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20, 33–54. Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20, 33–54.
Zurück zum Zitat Savigny, J., & Purwarianti, A. (2017). Emotion classification on youtube comments using word embedding. In 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA). IEEE, S. 1–5. Savigny, J., & Purwarianti, A. (2017). Emotion classification on youtube comments using word embedding. In 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA). IEEE, S. 1–5.
Zurück zum Zitat Semberecki, P., & Maciejewski, H. (2017). Deep learning methods for subject text classification of articles. In 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, S. 357–360. Semberecki, P., & Maciejewski, H. (2017). Deep learning methods for subject text classification of articles. In 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, S. 357–360.
Zurück zum Zitat Sharma, Y., Agrawal, G., Jain, P., & Kumar, T. (2017). Vector representation of words for sentiment analysis using GloVe. In 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT). IEEE, S. 279–284. Sharma, Y., Agrawal, G., Jain, P., & Kumar, T. (2017). Vector representation of words for sentiment analysis using GloVe. In 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT). IEEE, S. 279–284.
Zurück zum Zitat Sharma, R., Bhattacharyya, P., Dandapat, S., & Bhatt, H. S. (2018). Identifying transferable information across domains for cross-domain sentiment classification. In Proceedings of the 56th annual meeting of the association for computational linguistics. association for computational linguistics, S. 968–978. Sharma, R., Bhattacharyya, P., Dandapat, S., & Bhatt, H. S. (2018). Identifying transferable information across domains for cross-domain sentiment classification. In Proceedings of the 56th annual meeting of the association for computational linguistics. association for computational linguistics, S. 968–978.
Zurück zum Zitat Shen, C.-H., Sung, J. Y., & Lee, H.-Y. (2018a). Language transfer of audio Word2Vec: Learning audio segment representations without target language data. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 2231–2235. Shen, C.-H., Sung, J. Y., & Lee, H.-Y. (2018a). Language transfer of audio Word2Vec: Learning audio segment representations without target language data. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 2231–2235.
Zurück zum Zitat Shen, C.-H., Sung, J. Y., & Lee, H.-Y. (2018b). Language transfer of audio Word2Vec: Learning audio segment representations without target language data. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 2231–2235. Shen, C.-H., Sung, J. Y., & Lee, H.-Y. (2018b). Language transfer of audio Word2Vec: Learning audio segment representations without target language data. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, S. 2231–2235.
Zurück zum Zitat Solangi, Y. A., Solangi, Z. A., Aarain, S., et al. (2018). Review on Natural Language Processing (NLP) and its toolkits for opinion mining and sentiment analysis. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS). IEEE, S. 1–4. Solangi, Y. A., Solangi, Z. A., Aarain, S., et al. (2018). Review on Natural Language Processing (NLP) and its toolkits for opinion mining and sentiment analysis. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS). IEEE, S. 1–4.
Zurück zum Zitat Sravani, L., Reddy, A. S., & Thara, S. (2018). A comparison study of word embedding for detecting named entities of code-mixed data in Indian language. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, S. 2375–2381. Sravani, L., Reddy, A. S., & Thara, S. (2018). A comparison study of word embedding for detecting named entities of code-mixed data in Indian language. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, S. 2375–2381.
Zurück zum Zitat Stratos, K., Collins, M., & Hsu, D. (2015). Model-based word embeddings from decompositions of count matrices. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing. Association for computational linguistics, S. 1282–1291. Stratos, K., Collins, M., & Hsu, D. (2015). Model-based word embeddings from decompositions of count matrices. In Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing. Association for computational linguistics, S. 1282–1291.
Zurück zum Zitat Sukanya, M., & Biruntha, S. (2012). Techniques on text mining. In 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). IEEE, S. 269–271. Sukanya, M., & Biruntha, S. (2012). Techniques on text mining. In 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT). IEEE, S. 269–271.
Zurück zum Zitat Sumit, S. H., Hossan, M. Z., Al Muntasir, T., & Sourov, T. (2018). Exploring word embedding for Bangla sentiment analysis. In 2018 International Conference on Bangla Speech and Language Processing (ICBSLP). IEEE, S. 1–5. Sumit, S. H., Hossan, M. Z., Al Muntasir, T., & Sourov, T. (2018). Exploring word embedding for Bangla sentiment analysis. In 2018 International Conference on Bangla Speech and Language Processing (ICBSLP). IEEE, S. 1–5.
Zurück zum Zitat Taqi, A. M., Awad, A., Al-Azzo, F., & Milanova, M. (2018). The impact of multi-optimizers and data augmentation on TensorFlow convolutional neural network performance. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, S. 140–145. Taqi, A. M., Awad, A., Al-Azzo, F., & Milanova, M. (2018). The impact of multi-optimizers and data augmentation on TensorFlow convolutional neural network performance. In 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, S. 140–145.
Zurück zum Zitat TH, M., Sahu, S. K., & Anand, A. (2015). Evaluating distributed word representations for capturing semantics of biomedical concepts. In Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP 2015). Association for Computer Linguistics, S. 158–163. TH, M., Sahu, S. K., & Anand, A. (2015). Evaluating distributed word representations for capturing semantics of biomedical concepts. In Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP 2015). Association for Computer Linguistics, S. 158–163.
Zurück zum Zitat Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99–114. CrossRef Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 5, 99–114. CrossRef
Zurück zum Zitat Urata, T., & Maeda, A. (2017). An entity disambiguation approach based on Wikipedia for entity linking in microblogs. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE, S. 334–338. Urata, T., & Maeda, A. (2017). An entity disambiguation approach based on Wikipedia for entity linking in microblogs. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). IEEE, S. 334–338.
Zurück zum Zitat Van Tuan, D., & Sato, H. (2017). Improving distributed representation by feature selection of Wikipedia. In 2017 Fourth Asian Conference on Defence Technology – Japan (ACDT). IEEE, S. 1–6. Van Tuan, D., & Sato, H. (2017). Improving distributed representation by feature selection of Wikipedia. In 2017 Fourth Asian Conference on Defence Technology – Japan (ACDT). IEEE, S. 1–6.
Zurück zum Zitat Wang, Y., & Berwick, R. C. (2012). On formal models for cognitive linguistics. In 2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing. IEEE, S. 7–17. Wang, Y., & Berwick, R. C. (2012). On formal models for cognitive linguistics. In 2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing. IEEE, S. 7–17.
Zurück zum Zitat Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph and text jointly embedding. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for computer linguistics, Doha, Qatar, S. 1591–1601. Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014). Knowledge graph and text jointly embedding. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for computer linguistics, Doha, Qatar, S. 1591–1601.
Zurück zum Zitat Wint, Z. Z., Manabe, Y., & Aritsugi, M. (2018). Deep learning based sentiment classification in social network services datasets. In 2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD). IEEE, S. 91–96. Wint, Z. Z., Manabe, Y., & Aritsugi, M. (2018). Deep learning based sentiment classification in social network services datasets. In 2018 IEEE International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD). IEEE, S. 91–96.
Zurück zum Zitat Yi, X., Zheng, R., Wang, A., et al. (2017). Design and implementation of Word2Vec parallel algorithm based on HPC. In 2017 Chinese Automation Congress (CAC). IEEE, S. 585–590. Yi, X., Zheng, R., Wang, A., et al. (2017). Design and implementation of Word2Vec parallel algorithm based on HPC. In 2017 Chinese Automation Congress (CAC). IEEE, S. 585–590.
Zurück zum Zitat Yuan, C., Wu, J., Li, H., & Wang, L. (2018). Personality recognition based on user generated content. In 2018 15th International Conference on Service Systems and Service Management (ICSSSM). IEEE, S. 1–6. Yuan, C., Wu, J., Li, H., & Wang, L. (2018). Personality recognition based on user generated content. In 2018 15th International Conference on Service Systems and Service Management (ICSSSM). IEEE, S. 1–6.
Zurück zum Zitat Zhang, C., Wang, X., Yu, S., & Wang, Y. (2018). Research on keyword extraction of Word2vec model in Chinese corpus. In 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). IEEE, S. 339–343. Zhang, C., Wang, X., Yu, S., & Wang, Y. (2018). Research on keyword extraction of Word2vec model in Chinese corpus. In 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS). IEEE, S. 339–343.
Zurück zum Zitat Zhang, X., Lin, P., Chen, S., et al. (2016). Valence-arousal prediction of Chinese Words with multi-layer corpora. In 2016 International Conference on Asian Language Processing (IALP). IEEE, S. 304–307. Zhang, X., Lin, P., Chen, S., et al. (2016). Valence-arousal prediction of Chinese Words with multi-layer corpora. In 2016 International Conference on Asian Language Processing (IALP). IEEE, S. 304–307.
Zurück zum Zitat Zhang, X., & Yu, Q. (2017). Hotel reviews sentiment analysis based on word vector clustering. In 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). IEEE, S. 260–264. Zhang, X., & Yu, Q. (2017). Hotel reviews sentiment analysis based on word vector clustering. In 2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA). IEEE, S. 260–264.
Metadaten
Titel
Vergleichende Analyse der Word-Embedding-Verfahren Word2Vec und GloVe am Beispiel von Kundenbewertungen eines Online-Versandhändlers
verfasst von
Nils Horn
Michel Sebastian Erhardt
Manuel Di Stefano
Florian Bosten
Rüdiger Buchkremer
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-658-29550-9_29

Premium Partner