Skip to main content
Erschienen in: Journal of Electronic Materials 7/2021

19.04.2021 | Original Research Article

Versatile Fabrication of Binary Composite SnO2-Mn2O3 Thin Films by AACVD for Synergistic Photocatalytic Effect

verfasst von: Rabia Naeem, Muhammad Adil Mansoor, Khadija Munawar, Ahmad Adnan, Tuan Zaharinie, Mohd Nashrul Mohd Zubir

Erschienen in: Journal of Electronic Materials | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, we prepared a SnO2-Mn2O3 binary composite thin-film electrode by a single-step solution-based aerosol assisted chemical vapor deposition (AACVD) technique for photovoltaic applications. The grown composite thin films were characterized to determine their properties, such as structure, composition, morphology and band gap by field emission scanning electron microscopy (FESEM), x-ray diffractometry (XRD), Raman scattering, energy-dispersive x-ray spectrometry (EDX), x-ray photoelectron spectroscopy (XPS) and UV-Vis absorption spectrophotometry. The evaluation of photoelectrochemical (PEC) response of as-synthesized SnO2-Mn2O3 composite photoelectrode, in comparison to the individual thin films of pristine SnO2 and Mn2O3 prepared from their respective precursors under the same conditions, engendered a promising improvement in photocurrent density. The synergistic effect between SnO2 and Mn2O3, the relevance of ball-like morphology, suitable and tunable energy band gap, and better absorbance under the visible range of light resulted in improved photocurrent of ~6.6 mA cm-2 at +0.7 V versus Ag/AgCl electrode of the binary composite, which was 16.5- and 3.4-fold higher than that of the pure SnO2 and Mn2O3, respectively. No apparent photocurrent decrease was observed during prolonged stability measurements for 300 s under one-sun illumination of 100 mW cm-2. The results confirmed the enhancement in PEC activity due to reduced recombination rate of photoinduced electron-hole pairs and improved interfacial charge transfer between electrode/electrolyte interface, which boost the PEC performance of SnO2-Mn2O3 binary composite thin film electrode towards water cleavage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.S. Chavali, M.P. Nikolova, and S.N. Appl, Sci. 1, 607 (2019). M.S. Chavali, M.P. Nikolova, and S.N. Appl, Sci. 1, 607 (2019).
2.
Zurück zum Zitat T.A. Dontsova, S.V. Nahirniak, and I.M. Astrelin, J. Nanomater. 2019, 5942194 (2019).CrossRef T.A. Dontsova, S.V. Nahirniak, and I.M. Astrelin, J. Nanomater. 2019, 5942194 (2019).CrossRef
3.
Zurück zum Zitat M.G. Lee, J.S. Park, and H.W. Jang, J. Korean Ceram. Soc. 55, 185 (2018).CrossRef M.G. Lee, J.S. Park, and H.W. Jang, J. Korean Ceram. Soc. 55, 185 (2018).CrossRef
4.
Zurück zum Zitat X. Chen, Y. Li, and S. Shen, J. Phys. D: Appl. Phys. 51, 163002 (2018).CrossRef X. Chen, Y. Li, and S. Shen, J. Phys. D: Appl. Phys. 51, 163002 (2018).CrossRef
5.
Zurück zum Zitat M. Parashar, V.K. Shukla, and R. Singh, J. Mater. Sci.-Mater. Electron. 31, 3729 (2020).CrossRef M. Parashar, V.K. Shukla, and R. Singh, J. Mater. Sci.-Mater. Electron. 31, 3729 (2020).CrossRef
6.
Zurück zum Zitat H. Ahmoum, M. Boughrara, M.S. Su’ait, G. Li, S. Chopra, Q. Wang, and M. Kerouad, Mater. Chem. Phys. 251, 123065 (2020).CrossRef H. Ahmoum, M. Boughrara, M.S. Su’ait, G. Li, S. Chopra, Q. Wang, and M. Kerouad, Mater. Chem. Phys. 251, 123065 (2020).CrossRef
7.
Zurück zum Zitat V.K. Jayaraman, R.R. Biswal, A.G. Hernandez, A. Maldonado, and H. Gomez-Pozos, J. Mater. Sci.-Mater. Electron. 31, 7423 (2020).CrossRef V.K. Jayaraman, R.R. Biswal, A.G. Hernandez, A. Maldonado, and H. Gomez-Pozos, J. Mater. Sci.-Mater. Electron. 31, 7423 (2020).CrossRef
8.
Zurück zum Zitat T. Dedova, I.O. Acik, Z. Chen, A. Katerski, K. Balmassov, I. Gromyko, T. Nagyné-Kovács, I.M. Szilágyi, and M. Krunks, Mater. Chem. Phys. 245, 122767 (2020).CrossRef T. Dedova, I.O. Acik, Z. Chen, A. Katerski, K. Balmassov, I. Gromyko, T. Nagyné-Kovács, I.M. Szilágyi, and M. Krunks, Mater. Chem. Phys. 245, 122767 (2020).CrossRef
9.
Zurück zum Zitat J. Jiang, Z. Mu, P. Zhao, H. Wang, and Y. Lin, Mater. Chem. Phys. 252, 123194 (2020).CrossRef J. Jiang, Z. Mu, P. Zhao, H. Wang, and Y. Lin, Mater. Chem. Phys. 252, 123194 (2020).CrossRef
10.
Zurück zum Zitat R. Naeem, R. Yahya, A. Pandikumar, H.N. Ming, and M. Mazhar, J. Mater. Sci.-Mater. Electron. 28, 868 (2017).CrossRef R. Naeem, R. Yahya, A. Pandikumar, H.N. Ming, and M. Mazhar, J. Mater. Sci.-Mater. Electron. 28, 868 (2017).CrossRef
11.
Zurück zum Zitat T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar, and F. Iqbal, Mater. Chem. Phys. 249, 122983 (2020).CrossRef T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar, and F. Iqbal, Mater. Chem. Phys. 249, 122983 (2020).CrossRef
12.
Zurück zum Zitat A. López-Suárez, D. Acosta, C. Magaña, and F. Hernández, J. Mater. Sci.-Mater. Electron. 31, 7389 (2020).CrossRef A. López-Suárez, D. Acosta, C. Magaña, and F. Hernández, J. Mater. Sci.-Mater. Electron. 31, 7389 (2020).CrossRef
13.
Zurück zum Zitat R. Naeem, S. Ahmed, K.M. Lo, W.J. Basirun, R. Yahya, M. Misran, T. Peiris, J.S. Sagu, K. Wijayantha, and A.K. Thapa, Chem. Vapor Depos. 21, 360 (2015).CrossRef R. Naeem, S. Ahmed, K.M. Lo, W.J. Basirun, R. Yahya, M. Misran, T. Peiris, J.S. Sagu, K. Wijayantha, and A.K. Thapa, Chem. Vapor Depos. 21, 360 (2015).CrossRef
14.
Zurück zum Zitat R. Naeem, R. Yahya, A. Pandikumar, N.M. Huang, M. Misran, Z. Arifin, and M. Mazhar, Mater. Today Commun. 4, 141 (2015).CrossRef R. Naeem, R. Yahya, A. Pandikumar, N.M. Huang, M. Misran, Z. Arifin, and M. Mazhar, Mater. Today Commun. 4, 141 (2015).CrossRef
15.
Zurück zum Zitat B.L. Vijayan, I.I. Misnon, G.M.A. Kumar, K. Miyajima, M.V. Reddy, K. Zaghib, C. Karuppiah, C.-C. Yang, and R. Jose, J. Colloid Interface Sci. 562, 567 (2020).CrossRef B.L. Vijayan, I.I. Misnon, G.M.A. Kumar, K. Miyajima, M.V. Reddy, K. Zaghib, C. Karuppiah, C.-C. Yang, and R. Jose, J. Colloid Interface Sci. 562, 567 (2020).CrossRef
17.
Zurück zum Zitat K.R. Jawaher, R. Indirajith, S. Krishnan, R. Robert, S.K.K. Pasha, K. Deshmukh, and S.J. Das, J. Sci. 3, 139 (2018). K.R. Jawaher, R. Indirajith, S. Krishnan, R. Robert, S.K.K. Pasha, K. Deshmukh, and S.J. Das, J. Sci. 3, 139 (2018).
18.
Zurück zum Zitat M.F.M. Noh, M.F. Soh, C.H. Teh, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, and M.A.M. Teridi, Sol. Energy 158, 474 (2017).CrossRef M.F.M. Noh, M.F. Soh, C.H. Teh, E.L. Lim, C.C. Yap, M.A. Ibrahim, N.A. Ludin, and M.A.M. Teridi, Sol. Energy 158, 474 (2017).CrossRef
19.
Zurück zum Zitat H. Xie, X. Yin, P. Chen, J. Liu, C. Yang, W. Que, and G. Wang, Mater. Lett. 234, 311 (2019).CrossRef H. Xie, X. Yin, P. Chen, J. Liu, C. Yang, W. Que, and G. Wang, Mater. Lett. 234, 311 (2019).CrossRef
20.
Zurück zum Zitat Q. Zhao, L. Ma, Q. Zhang, C. Wang, and X. Xu, J. Nanomater. 2015, 850147 (2015). Q. Zhao, L. Ma, Q. Zhang, C. Wang, and X. Xu, J. Nanomater. 2015, 850147 (2015).
21.
Zurück zum Zitat Y. Wang, J. Cui, L. Luo, J. Zhang, Y. Wang, Y. Qin, Y. Zhang, X. Shu, J. Lv, and Y. Wu, Appl. Surf. Sci. 423, 1182 (2017).CrossRef Y. Wang, J. Cui, L. Luo, J. Zhang, Y. Wang, Y. Qin, Y. Zhang, X. Shu, J. Lv, and Y. Wu, Appl. Surf. Sci. 423, 1182 (2017).CrossRef
22.
Zurück zum Zitat H.S. Jadhav, G.M. Thorat, B.B. Kale, and J.G. Seo, Dalton Trans. 46, 9777 (2017).CrossRef H.S. Jadhav, G.M. Thorat, B.B. Kale, and J.G. Seo, Dalton Trans. 46, 9777 (2017).CrossRef
23.
Zurück zum Zitat M.A. Mansoor, M. Mazhar, A. Pandikumar, H. Khaledi, H.N. Ming, and Z. Arifin, Int. J. Hydrog. Energy 41, 9267 (2016).CrossRef M.A. Mansoor, M. Mazhar, A. Pandikumar, H. Khaledi, H.N. Ming, and Z. Arifin, Int. J. Hydrog. Energy 41, 9267 (2016).CrossRef
24.
Zurück zum Zitat Q.-Z. Gou, C. Li, X.-Q. Zhang, B. Zhang, S.-R. Zou, N. Hu, D.-W. Sun, and C.-X. Lei, J. Mater. Sci.-Mater. Electron. 29, 16064 (2018).CrossRef Q.-Z. Gou, C. Li, X.-Q. Zhang, B. Zhang, S.-R. Zou, N. Hu, D.-W. Sun, and C.-X. Lei, J. Mater. Sci.-Mater. Electron. 29, 16064 (2018).CrossRef
25.
Zurück zum Zitat M.A. Mansoor, M. Mazhar, V. McKee, and Z. Arifin, Polyhedron 75, 135 (2014).CrossRef M.A. Mansoor, M. Mazhar, V. McKee, and Z. Arifin, Polyhedron 75, 135 (2014).CrossRef
26.
Zurück zum Zitat M.E. Assal, M.R. Shaik, M. Kuniyil, M. Khan, A. Al-Warthan, A.I. Alharthi, R. Varala, M.R.H. Siddiqui, and S.F. Adil, Arab. J. Chem. 12, 54 (2019).CrossRef M.E. Assal, M.R. Shaik, M. Kuniyil, M. Khan, A. Al-Warthan, A.I. Alharthi, R. Varala, M.R.H. Siddiqui, and S.F. Adil, Arab. J. Chem. 12, 54 (2019).CrossRef
27.
Zurück zum Zitat M.M. Alam, M.T. Uddin, A.M. Asiri, M.M. Rahman, and M.A. Islam, Arab. J. Chem. 13, 5406 (2020).CrossRef M.M. Alam, M.T. Uddin, A.M. Asiri, M.M. Rahman, and M.A. Islam, Arab. J. Chem. 13, 5406 (2020).CrossRef
28.
Zurück zum Zitat R. Naeem, M.A. Ehsan, R. Yahya, M. Sohail, H. Khaledi, and M. Mazhar, Dalton Trans. 45, 14928 (2016).CrossRef R. Naeem, M.A. Ehsan, R. Yahya, M. Sohail, H. Khaledi, and M. Mazhar, Dalton Trans. 45, 14928 (2016).CrossRef
29.
Zurück zum Zitat M. Mansoor, M. Ebadi, M. Mazhar, N. Huang, L. Mun, M. Misran, and W. Basirun, Mater. Chem. Phys. 186, 286 (2017).CrossRef M. Mansoor, M. Ebadi, M. Mazhar, N. Huang, L. Mun, M. Misran, and W. Basirun, Mater. Chem. Phys. 186, 286 (2017).CrossRef
30.
Zurück zum Zitat R. Saravanan, V.K. Gupta, V. Narayanan, and A. Stephen, J. Taiwan Inst. Chem. Eng. 45, 1910 (2014).CrossRef R. Saravanan, V.K. Gupta, V. Narayanan, and A. Stephen, J. Taiwan Inst. Chem. Eng. 45, 1910 (2014).CrossRef
31.
Zurück zum Zitat S. Alagar, R. Madhuvilakku, R. Mariappan, and S. Piraman, J. Power Sour. 441, 227181 (2019).CrossRef S. Alagar, R. Madhuvilakku, R. Mariappan, and S. Piraman, J. Power Sour. 441, 227181 (2019).CrossRef
32.
Zurück zum Zitat S. Ji, Y. Ma, H. Wang, J. Key, D.J.L. Brett, and R. Wang, Electrochim. Acta 219, 540 (2016).CrossRef S. Ji, Y. Ma, H. Wang, J. Key, D.J.L. Brett, and R. Wang, Electrochim. Acta 219, 540 (2016).CrossRef
33.
Zurück zum Zitat M. Radecka, A. Wnuk, A. Trenczek-Zajac, K. Schneider, and K. Zakrzewska, Int. J. Hydrog. Energy 40, 841 (2015).CrossRef M. Radecka, A. Wnuk, A. Trenczek-Zajac, K. Schneider, and K. Zakrzewska, Int. J. Hydrog. Energy 40, 841 (2015).CrossRef
34.
Zurück zum Zitat D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, and J. Jiao, Nanoscale Res. Lett. 13, 92 (2018).CrossRef D. Chen, L. Wei, L. Meng, D. Wang, Y. Chen, Y. Tian, S. Yan, L. Mei, and J. Jiao, Nanoscale Res. Lett. 13, 92 (2018).CrossRef
35.
Zurück zum Zitat D. Talinungsang, D. Upadhaya, D. Purkayastha, and M.G. Krishna, Mater. Chem. Phys. 241, 122333 (2020).CrossRef D. Talinungsang, D. Upadhaya, D. Purkayastha, and M.G. Krishna, Mater. Chem. Phys. 241, 122333 (2020).CrossRef
36.
Zurück zum Zitat V. Pavitra, R. Udayabhanu, R. Harini, R. Viswanatha, B.M. Praveen, and G. Nagaraju, J. Mater. Sci.-Mater. Electron. 31, 8737 (2020).CrossRef V. Pavitra, R. Udayabhanu, R. Harini, R. Viswanatha, B.M. Praveen, and G. Nagaraju, J. Mater. Sci.-Mater. Electron. 31, 8737 (2020).CrossRef
37.
Zurück zum Zitat M.R. Kumar, G. Murugadoss, A.N. Pirogov, and R. Thangamuthu, J. Mater. Sci.-Mater. Electron. 29, 13508 (2018).CrossRef M.R. Kumar, G. Murugadoss, A.N. Pirogov, and R. Thangamuthu, J. Mater. Sci.-Mater. Electron. 29, 13508 (2018).CrossRef
38.
Zurück zum Zitat Z.H. Bakr, Q. Wali, S. Yang, M. Yousefsadeh, K.P. Padmasree, J. Ismail, M.H. Ab Rahim, M.M. Yusoff, and R. Jose, Ind. Eng. Chem. Res. 58, 643 (2019).CrossRef Z.H. Bakr, Q. Wali, S. Yang, M. Yousefsadeh, K.P. Padmasree, J. Ismail, M.H. Ab Rahim, M.M. Yusoff, and R. Jose, Ind. Eng. Chem. Res. 58, 643 (2019).CrossRef
39.
Zurück zum Zitat T.-Y. Lai, T.-H. Fang, Y.-J. Hsiao, and C.-A. Chan, Vacuum 166, 155 (2019).CrossRef T.-Y. Lai, T.-H. Fang, Y.-J. Hsiao, and C.-A. Chan, Vacuum 166, 155 (2019).CrossRef
40.
Zurück zum Zitat X. Wang, X. Hu, J. Huang, W. Zhang, W. Ji, Y. Hui, and X. Yao, Solid State Sci. 94, 64 (2019).CrossRef X. Wang, X. Hu, J. Huang, W. Zhang, W. Ji, Y. Hui, and X. Yao, Solid State Sci. 94, 64 (2019).CrossRef
41.
Zurück zum Zitat G. Zhang, L. Sang, G. Xu, Y. Dou, and X. Wang, J. Mater. Sci.-Mater. Electron. 31, 8220 (2020).CrossRef G. Zhang, L. Sang, G. Xu, Y. Dou, and X. Wang, J. Mater. Sci.-Mater. Electron. 31, 8220 (2020).CrossRef
42.
43.
Zurück zum Zitat D. Xue, Z. Zhang, and Y. Wang, Mater. Chem. Phys. 237, 121864 (2019).CrossRef D. Xue, Z. Zhang, and Y. Wang, Mater. Chem. Phys. 237, 121864 (2019).CrossRef
44.
Zurück zum Zitat Y. Chen, W. Li, D. Jiang, K. Men, Z. Li, L. Li, S. Sun, J. Li, Z.-H. Huang, and L.-N. Wang, Sci. Bull. 64, 44 (2019).CrossRef Y. Chen, W. Li, D. Jiang, K. Men, Z. Li, L. Li, S. Sun, J. Li, Z.-H. Huang, and L.-N. Wang, Sci. Bull. 64, 44 (2019).CrossRef
45.
Zurück zum Zitat L. Sun, Y. Liu, P. Wu, and W. Zhou, Mater. Chem. Phys. 239, 122071 (2020).CrossRef L. Sun, Y. Liu, P. Wu, and W. Zhou, Mater. Chem. Phys. 239, 122071 (2020).CrossRef
46.
Zurück zum Zitat Z. Cui, M. Sun, H. Liu, S. Li, Q. Zhang, C. Yang, G. Liu, J. Zhong, and Y. Wang, CrystEngComm 22, 1197 (2020).CrossRef Z. Cui, M. Sun, H. Liu, S. Li, Q. Zhang, C. Yang, G. Liu, J. Zhong, and Y. Wang, CrystEngComm 22, 1197 (2020).CrossRef
47.
Zurück zum Zitat S. Ibarra-Treviño, L.L. Garza-Tovar, E. Sánchez, and L.C. Torres-González, J. Mater. Sci.-Mater. Electron. 24, 3219 (2013).CrossRef S. Ibarra-Treviño, L.L. Garza-Tovar, E. Sánchez, and L.C. Torres-González, J. Mater. Sci.-Mater. Electron. 24, 3219 (2013).CrossRef
48.
Zurück zum Zitat M. Naushad, M.R. Khan, S.S. Bhande, S.F. Shaikh, S.M. Alfadul, P.V. Shinde, and R.S. Mane, New J. Chem. 42, 9028 (2018).CrossRef M. Naushad, M.R. Khan, S.S. Bhande, S.F. Shaikh, S.M. Alfadul, P.V. Shinde, and R.S. Mane, New J. Chem. 42, 9028 (2018).CrossRef
49.
Zurück zum Zitat S. Senthil, S. Srinivasan, T. Thangeeswari, and V. Ratchagar, J. Mater. Sci.-Mater. Electron. 30, 19841 (2019).CrossRef S. Senthil, S. Srinivasan, T. Thangeeswari, and V. Ratchagar, J. Mater. Sci.-Mater. Electron. 30, 19841 (2019).CrossRef
50.
Zurück zum Zitat Y. Xie, S. Yu, Y. Zhong, Q. Zhang, and Y. Zhou, Appl. Surf. Sci. 448, 655 (2018).CrossRef Y. Xie, S. Yu, Y. Zhong, Q. Zhang, and Y. Zhou, Appl. Surf. Sci. 448, 655 (2018).CrossRef
51.
Zurück zum Zitat S.-Y. Chen, J.-S. Yang, J.-J. Wu, and A.C.S. Appl, Energ. Mater. 1, 2143 (2018). S.-Y. Chen, J.-S. Yang, J.-J. Wu, and A.C.S. Appl, Energ. Mater. 1, 2143 (2018).
52.
Zurück zum Zitat S. Byun, B. Kim, S. Jeon, and B. Shin, J. Mater. Chem. A 5, 6905 (2017).CrossRef S. Byun, B. Kim, S. Jeon, and B. Shin, J. Mater. Chem. A 5, 6905 (2017).CrossRef
53.
Zurück zum Zitat S. Yuan, D.-L. Ma, S. Wang, Y. Liu, X. Yang, and Z. Cao, Mater. Lett. 145, 104 (2015).CrossRef S. Yuan, D.-L. Ma, S. Wang, Y. Liu, X. Yang, and Z. Cao, Mater. Lett. 145, 104 (2015).CrossRef
54.
Zurück zum Zitat K. Siuzdak, M. Szkoda, J. Karczewski, J. Ryl, K. Darowicki, and K. Grochowska, Sin.-Engl. Lett. 30, 1210 (2017). K. Siuzdak, M. Szkoda, J. Karczewski, J. Ryl, K. Darowicki, and K. Grochowska, Sin.-Engl. Lett. 30, 1210 (2017).
55.
Zurück zum Zitat F. Bakhtiargonbadi, H. Esfahani, R.S. Moakhar, and F. Dabir, Mater. Chem. Phys. 252, 123270 (2020).CrossRef F. Bakhtiargonbadi, H. Esfahani, R.S. Moakhar, and F. Dabir, Mater. Chem. Phys. 252, 123270 (2020).CrossRef
56.
Zurück zum Zitat B.L. Vijayan, S.G. Krishnan, N.K.M. Zain, M. Harilal, A. Yar, I.I. Misnon, J.O. Dennis, M.M. Yusoff, and R. Jose, Chem. Eng. J. 327, 962 (2017).CrossRef B.L. Vijayan, S.G. Krishnan, N.K.M. Zain, M. Harilal, A. Yar, I.I. Misnon, J.O. Dennis, M.M. Yusoff, and R. Jose, Chem. Eng. J. 327, 962 (2017).CrossRef
57.
Zurück zum Zitat S. Ibrahim, P. Bonnet, M. Sarakha, C. Caperaa, G. Monier, and A. Bousquet, Mater. Chem. Phys. 243, 122580 (2020).CrossRef S. Ibrahim, P. Bonnet, M. Sarakha, C. Caperaa, G. Monier, and A. Bousquet, Mater. Chem. Phys. 243, 122580 (2020).CrossRef
58.
Zurück zum Zitat R. Naeem, M.A. Ehsan, A. Rehman, Z.H. Yamani, A.S. Hakeem, and M. Mazhar, New J. Chem. 42, 5256 (2018).CrossRef R. Naeem, M.A. Ehsan, A. Rehman, Z.H. Yamani, A.S. Hakeem, and M. Mazhar, New J. Chem. 42, 5256 (2018).CrossRef
59.
Zurück zum Zitat M.A. Ehsan, R. Naeem, H. Khaledi, M. Sohail, A.H. Saeed, and M. Mazhar, Dalton Trans. 45, 10222 (2016).CrossRef M.A. Ehsan, R. Naeem, H. Khaledi, M. Sohail, A.H. Saeed, and M. Mazhar, Dalton Trans. 45, 10222 (2016).CrossRef
60.
Zurück zum Zitat M.A. Ehsan, R. Naeem, V. McKee, A. Rehman, A.S. Hakeem, and M. Mazhar, J. Mater. Sci.-Mater. Electron. 30, 1411 (2019).CrossRef M.A. Ehsan, R. Naeem, V. McKee, A. Rehman, A.S. Hakeem, and M. Mazhar, J. Mater. Sci.-Mater. Electron. 30, 1411 (2019).CrossRef
61.
Zurück zum Zitat M.A. Ehsan, R. Naeem, A. Rehman, A.S. Hakeem, and M. Mazhar, J. Mater. Sci.-Mater. Electron. 29, 13209 (2018).CrossRef M.A. Ehsan, R. Naeem, A. Rehman, A.S. Hakeem, and M. Mazhar, J. Mater. Sci.-Mater. Electron. 29, 13209 (2018).CrossRef
62.
Zurück zum Zitat M.F.M. Noh, M.F. Soh, M.A. Riza, J. Safaei, S.N.M. Nasir, N.W.M. Sapian, C.H. Teh, M.A. Ibrahim, N.A. Ludin, and M.A.M. Teridi, Phys. Status Solidi B-Basic Res. 255, 1700570 (2018).CrossRef M.F.M. Noh, M.F. Soh, M.A. Riza, J. Safaei, S.N.M. Nasir, N.W.M. Sapian, C.H. Teh, M.A. Ibrahim, N.A. Ludin, and M.A.M. Teridi, Phys. Status Solidi B-Basic Res. 255, 1700570 (2018).CrossRef
Metadaten
Titel
Versatile Fabrication of Binary Composite SnO2-Mn2O3 Thin Films by AACVD for Synergistic Photocatalytic Effect
verfasst von
Rabia Naeem
Muhammad Adil Mansoor
Khadija Munawar
Ahmad Adnan
Tuan Zaharinie
Mohd Nashrul Mohd Zubir
Publikationsdatum
19.04.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 7/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-08897-6

Weitere Artikel der Ausgabe 7/2021

Journal of Electronic Materials 7/2021 Zur Ausgabe

Neuer Inhalt