Skip to main content
Erschienen in: Journal of Materials Science 21/2020

22.04.2020 | Composites & nanocomposites

Vertically aligned dopamine-reduced graphene oxide with high thermal conductivity for epoxy nanocomposites

verfasst von: Yingchun Liu, Kun Wu, Maoping Lu, Shibin Nie, Weilong Chen, Enxiang Jiao, Bingfei Nan, Liyan Liang, Mangeng Lu

Erschienen in: Journal of Materials Science | Ausgabe 21/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Designing ordered fillers arrangement and superior interfacial adhesion between fillers and matrix can improve the thermal conductivity (TC) of composites. Here, bioinspired dopamine chemistry was firstly used to reduce graphene oxide (GO) and introduce polydopamine nanoparticles on the surface of GO. Then, a well-aligned epoxy/reduced GO films (EP/RGFs) nanocomposites were prepared via the simple vacuum impregnation. Compared with the random distribution of fillers in a traditional blending composite, fillers were selectively distributed in matrix and continuous thermal conductive network structures were constructed in this strategy. As a result, the nanocomposite exhibited a high TC of 0.913 W m−1 K−1 which is 4.8 times higher than pure EP. In addition, curing kinetics showed that RGFs were similar to an amine-type curing agent that reacted with EP and bonded them tightly, and its nanocomposites reaction activation energy is lower than that of pure EP. These results indicated RGFs possessed excellent interface compatibility with EP and suppressing effectively the phonon scattering at the EP–RGFs interface. Cooling experiments showed that nanocomposites can reduce by about 10 °C for a hot source (80 °C), demonstrating it can transfer efficiently heat energy from the heat source. This study provides an effective method for the preparation of high-performance thermal management composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30(17):1705544CrossRef Xu X, Chen J, Zhou J, Li B (2018) Thermal conductivity of polymers and their nanocomposites. Adv Mater 30(17):1705544CrossRef
2.
Zurück zum Zitat Zhang F, Feng Y, Qin M, Gao L, Li Z, Zhao F et al (2019) Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv Funct Mater 29:1901383CrossRef Zhang F, Feng Y, Qin M, Gao L, Li Z, Zhao F et al (2019) Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv Funct Mater 29:1901383CrossRef
3.
Zurück zum Zitat Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee EMY et al (2018) Molecular engineered conjugated polymer with high thermal conductivity. Sci Adv 4(3):eaar3031CrossRef Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee EMY et al (2018) Molecular engineered conjugated polymer with high thermal conductivity. Sci Adv 4(3):eaar3031CrossRef
4.
Zurück zum Zitat Shanker A, Li C, Kim G-H, Gidley D, Pipe KP, Kim J (2017) High thermal conductivity in electrostatically engineered amorphous polymers. Sci Adv 3(7):e1700342CrossRef Shanker A, Li C, Kim G-H, Gidley D, Pipe KP, Kim J (2017) High thermal conductivity in electrostatically engineered amorphous polymers. Sci Adv 3(7):e1700342CrossRef
5.
Zurück zum Zitat Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef
6.
Zurück zum Zitat Chen J, Huang X, Sun B, Jiang P (2019) Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1):337–345CrossRef Chen J, Huang X, Sun B, Jiang P (2019) Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13(1):337–345CrossRef
7.
Zurück zum Zitat Yao Y, Zhu X, Zeng X, Sun R, Xu J-B, Wong C-P (2018) Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl Mater Interfaces 10(11):9669–9678CrossRef Yao Y, Zhu X, Zeng X, Sun R, Xu J-B, Wong C-P (2018) Vertically aligned and interconnected SiC nanowire networks leading to significantly enhanced thermal conductivity of polymer composites. ACS Appl Mater Interfaces 10(11):9669–9678CrossRef
8.
Zurück zum Zitat Feng Y, Hu J, Xue Y, He C, Zhou X, Xie X et al (2017) Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J Mater Chem A 5(26):13544–13556CrossRef Feng Y, Hu J, Xue Y, He C, Zhou X, Xie X et al (2017) Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J Mater Chem A 5(26):13544–13556CrossRef
9.
Zurück zum Zitat Suh D, Moon CM, Kim D, Baik S (2016) Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv Mater 28(33):7220–7227CrossRef Suh D, Moon CM, Kim D, Baik S (2016) Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits. Adv Mater 28(33):7220–7227CrossRef
10.
Zurück zum Zitat Chen W, Wang Z, Zhi C, Zhang W (2016) High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos Sci Technol 130:63–69CrossRef Chen W, Wang Z, Zhi C, Zhang W (2016) High thermal conductivity and temperature probing of copper nanowire/upconversion nanoparticles/epoxy composite. Compos Sci Technol 130:63–69CrossRef
11.
Zurück zum Zitat Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRef Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRef
12.
Zurück zum Zitat Wang L, Qiu H, Liang C, Song P, Han Y, Han Y et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514CrossRef Wang L, Qiu H, Liang C, Song P, Han Y, Han Y et al (2019) Electromagnetic interference shielding MWCNT-Fe3O4@Ag/epoxy nanocomposites with satisfactory thermal conductivity and high thermal stability. Carbon 141:506–514CrossRef
13.
Zurück zum Zitat Song N, Cao D, Luo X, Guo Y, Gu J, Ding P (2018) Aligned cellulose/nanodiamond plastics with high thermal conductivity. J Mater Chem C 6(48):13108–13113CrossRef Song N, Cao D, Luo X, Guo Y, Gu J, Ding P (2018) Aligned cellulose/nanodiamond plastics with high thermal conductivity. J Mater Chem C 6(48):13108–13113CrossRef
14.
Zurück zum Zitat Liu Y, Lu M, Wu K, Yao S, Du X, Chen G et al (2019) Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos Sci Technol 174:1–10CrossRef Liu Y, Lu M, Wu K, Yao S, Du X, Chen G et al (2019) Anisotropic thermal conductivity and electromagnetic interference shielding of epoxy nanocomposites based on magnetic driving reduced graphene oxide@Fe3O4. Compos Sci Technol 174:1–10CrossRef
15.
Zurück zum Zitat Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRef
16.
Zurück zum Zitat Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT et al (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216CrossRef Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT et al (2010) Two-dimensional phonon transport in supported graphene. Science 328(5975):213–216CrossRef
17.
Zurück zum Zitat Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G et al (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252):1083–1087CrossRef Xin G, Yao T, Sun H, Scott SM, Shao D, Wang G et al (2015) Highly thermally conductive and mechanically strong graphene fibers. Science 349(6252):1083–1087CrossRef
18.
Zurück zum Zitat He Q, Wu S, Gao S, Cao X, Yin Z, Li H et al (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6):5038–5044CrossRef He Q, Wu S, Gao S, Cao X, Yin Z, Li H et al (2011) Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6):5038–5044CrossRef
19.
Zurück zum Zitat Qi X, Pu K-Y, Zhou X, Li H, Liu B, Boey F et al (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6(5):663–669CrossRef Qi X, Pu K-Y, Zhou X, Li H, Liu B, Boey F et al (2010) Conjugated-polyelectrolyte-functionalized reduced graphene oxide with excellent solubility and stability in polar solvents. Small 6(5):663–669CrossRef
20.
Zurück zum Zitat Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29(27):1700589CrossRef Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29(27):1700589CrossRef
21.
Zurück zum Zitat Liu ZQ, Peng PR, Liu ZH, Fang W, Zhou QZ, Liu XQ et al (2018) Electric-field-induced out-of-plane alignment of clay in poly (dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties. Compos Sci Technol 165:39–47CrossRef Liu ZQ, Peng PR, Liu ZH, Fang W, Zhou QZ, Liu XQ et al (2018) Electric-field-induced out-of-plane alignment of clay in poly (dimethylsiloxane) with enhanced anisotropic thermal conductivity and mechanical properties. Compos Sci Technol 165:39–47CrossRef
22.
Zurück zum Zitat Foley BM, Wallace M, Gaskins JT, Paisley EA, Johnson-Wilke RL, Kim JW et al (2018) Voltage-controlled bistable thermal conductivity in suspended ferroelectric thin-film membranes. ACS Appl Mater Interfaces 10(30):25493–25501CrossRef Foley BM, Wallace M, Gaskins JT, Paisley EA, Johnson-Wilke RL, Kim JW et al (2018) Voltage-controlled bistable thermal conductivity in suspended ferroelectric thin-film membranes. ACS Appl Mater Interfaces 10(30):25493–25501CrossRef
23.
Zurück zum Zitat Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240CrossRef
24.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRef
25.
Zurück zum Zitat Dong L, Hu C, Song L, Huang X, Chen N, Qu L, Large-Area A (2016) Flexible, and flame-retardant graphene paper. Adv Funct Mater 26(9):1470–1476CrossRef Dong L, Hu C, Song L, Huang X, Chen N, Qu L, Large-Area A (2016) Flexible, and flame-retardant graphene paper. Adv Funct Mater 26(9):1470–1476CrossRef
26.
Zurück zum Zitat Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992CrossRef Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992CrossRef
27.
Zurück zum Zitat Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114CrossRef Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114CrossRef
28.
Zurück zum Zitat Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339CrossRef Xu LQ, Yang WJ, Neoh K-G, Kang E-T, Fu GD (2010) Dopamine-induced reduction and functionalization of graphene oxide nanosheets. Macromolecules 43(20):8336–8339CrossRef
29.
Zurück zum Zitat Cao Y, Zhao YJ, Wang YX, Zhang Y, Wen JG, Zhao ZR et al (2019) Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides. Carbon 144:193–201CrossRef Cao Y, Zhao YJ, Wang YX, Zhang Y, Wen JG, Zhao ZR et al (2019) Reduction degree regulated room-temperature terahertz direct detection based on fully suspended and low-temperature thermally reduced graphene oxides. Carbon 144:193–201CrossRef
30.
Zurück zum Zitat Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T (2015) Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Appl Mater Interfaces 7(20):10755–10762CrossRef Ning N, Ma Q, Liu S, Tian M, Zhang L, Nishi T (2015) Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly(dopamine) encapsulated graphene oxide. ACS Appl Mater Interfaces 7(20):10755–10762CrossRef
31.
Zurück zum Zitat Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Sobczak J, Woisel P et al (2012) Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Appl Mater Interfaces 4(2):1016–1020CrossRef Kaminska I, Das MR, Coffinier Y, Niedziolka-Jonsson J, Sobczak J, Woisel P et al (2012) Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. ACS Appl Mater Interfaces 4(2):1016–1020CrossRef
32.
Zurück zum Zitat De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 119:190–199CrossRef De Silva KKH, Huang HH, Joshi RK, Yoshimura M (2017) Chemical reduction of graphene oxide using green reductants. Carbon 119:190–199CrossRef
33.
Zurück zum Zitat Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS et al (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845–3852CrossRef Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS et al (2010) A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4(7):3845–3852CrossRef
34.
Zurück zum Zitat Wang X, Song L, Yang H, Xing W, Kandola B, Hua Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22(41):22037–22043CrossRef Wang X, Song L, Yang H, Xing W, Kandola B, Hua Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22(41):22037–22043CrossRef
35.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814CrossRef
36.
Zurück zum Zitat Chen Y, Poetschke P, Pionteck J, Voit B, Qi H (2018) Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J Mater Chem A 6(17):7777–7785CrossRef Chen Y, Poetschke P, Pionteck J, Voit B, Qi H (2018) Smart cellulose/graphene composites fabricated by in situ chemical reduction of graphene oxide for multiple sensing applications. J Mater Chem A 6(17):7777–7785CrossRef
37.
Zurück zum Zitat Zhu B, Edmondson S (2011) Polydopamine-melanin initiators for surface-initiated ATRP. Polymer 52(10):2141–2149CrossRef Zhu B, Edmondson S (2011) Polydopamine-melanin initiators for surface-initiated ATRP. Polymer 52(10):2141–2149CrossRef
38.
Zurück zum Zitat Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28(15):6428–6435CrossRef Dreyer DR, Miller DJ, Freeman BD, Paul DR, Bielawski CW (2012) Elucidating the structure of poly(dopamine). Langmuir 28(15):6428–6435CrossRef
39.
Zurück zum Zitat Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRef Lerf A, He HY, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482CrossRef
40.
Zurück zum Zitat Lu M, Liu Y, Du X, Zhang S, Chen G, Zhang Q et al (2019) Cure kinetics and properties of high performance cycloaliphatic epoxy resins cured with anhydride. Ind Eng Chem Res 58(16):6907–6918CrossRef Lu M, Liu Y, Du X, Zhang S, Chen G, Zhang Q et al (2019) Cure kinetics and properties of high performance cycloaliphatic epoxy resins cured with anhydride. Ind Eng Chem Res 58(16):6907–6918CrossRef
41.
Zurück zum Zitat Antonelou A, Sygellou L, Vrettos K, Georgakilas V, Yannopoulos SN (2018) Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139:492–499CrossRef Antonelou A, Sygellou L, Vrettos K, Georgakilas V, Yannopoulos SN (2018) Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139:492–499CrossRef
42.
Zurück zum Zitat Kim HG, Oh I-K, Lee S, Jeon S, Choi H, Kim K et al (2019) Analysis of defect recovery in reduced graphene oxide and its application as a heater for self-healing polymers. ACS Appl Mater Interfaces 11(18):16804–16814CrossRef Kim HG, Oh I-K, Lee S, Jeon S, Choi H, Kim K et al (2019) Analysis of defect recovery in reduced graphene oxide and its application as a heater for self-healing polymers. ACS Appl Mater Interfaces 11(18):16804–16814CrossRef
43.
Zurück zum Zitat Sun Y, Wang S, Li M, Gu Y, Zhang Z (2018) Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking. Mater Des 144:263–270CrossRef Sun Y, Wang S, Li M, Gu Y, Zhang Z (2018) Improvement of out-of-plane thermal conductivity of composite laminate by electrostatic flocking. Mater Des 144:263–270CrossRef
44.
Zurück zum Zitat An F, Li X, Min P, Liu P, Jiang Z-G, Yu Z-Z (2018) Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl Mater Interfaces 10(20):17383–17392CrossRef An F, Li X, Min P, Liu P, Jiang Z-G, Yu Z-Z (2018) Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl Mater Interfaces 10(20):17383–17392CrossRef
45.
Zurück zum Zitat Shen Z, Feng J (2019) Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement. Compos Sci Technol 170:135–140CrossRef Shen Z, Feng J (2019) Achieving vertically aligned SiC microwires networks in a uniform cold environment for polymer composites with high through-plane thermal conductivity enhancement. Compos Sci Technol 170:135–140CrossRef
46.
Zurück zum Zitat Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18(2):157–168CrossRef Yousefi A, Lafleur PG, Gauvin R (1997) Kinetic studies of thermoset cure reactions: a review. Polym Compos 18(2):157–168CrossRef
47.
Zurück zum Zitat Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706CrossRef Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702–1706CrossRef
48.
Zurück zum Zitat Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED et al (2019) Understanding glass through differential scanning calorimetry. Chem Rev 119(13):7848–7939CrossRef Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED et al (2019) Understanding glass through differential scanning calorimetry. Chem Rev 119(13):7848–7939CrossRef
49.
Zurück zum Zitat Li W, Shang T, Yang W, Yang H, Lin S, Jia X et al (2016) Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding. ACS Appl Mater Interfaces 8(20):13037–13050CrossRef Li W, Shang T, Yang W, Yang H, Lin S, Jia X et al (2016) Effectively exerting the reinforcement of dopamine reduced graphene oxide on epoxy-based composites via strengthened interfacial bonding. ACS Appl Mater Interfaces 8(20):13037–13050CrossRef
Metadaten
Titel
Vertically aligned dopamine-reduced graphene oxide with high thermal conductivity for epoxy nanocomposites
verfasst von
Yingchun Liu
Kun Wu
Maoping Lu
Shibin Nie
Weilong Chen
Enxiang Jiao
Bingfei Nan
Liyan Liang
Mangeng Lu
Publikationsdatum
22.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 21/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04639-x

Weitere Artikel der Ausgabe 21/2020

Journal of Materials Science 21/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.