Skip to main content
Erschienen in: Microsystem Technologies 1/2014

01.01.2014 | Technical Paper

Vertically aligned multi-walled CNT arrays coated by gold nanoparticles for surface-enhanced Raman scattering

verfasst von: Jie Zhang, Yulin Chen, Tuo Fan, Chunhong Lai, Yong Zhu

Erschienen in: Microsystem Technologies | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A unique substrate for surface-enhanced Raman scattering on vertical multi-walled carbon nanotube (MWCNT) arrays coated by Au nanoparticles was reported. The vertically aligned MWCNT arrays were prepared by thermal chemical vapor deposition at temperature of 720 °C, and then coated by gold nanoparticles by sputtering. The possible mechanisms for the SERS sensitivity were discussed. Raman spectroscopy experiments for detecting Rhodamine6G were carried on and some obvious Raman peaks were observed and analyzed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J Phys Chem C 114:93–100CrossRef Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST (2010) ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. J Phys Chem C 114:93–100CrossRef
Zurück zum Zitat Chu HB, Wang JY, Ding L, Yuan DN, Zhang Y, Liu J, Li Y (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. J Am Chem Soc 131:14310–14316CrossRef Chu HB, Wang JY, Ding L, Yuan DN, Zhang Y, Liu J, Li Y (2009) Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. J Am Chem Soc 131:14310–14316CrossRef
Zurück zum Zitat Dawson P, Alexander KB, Thompson JR, Haas JW III, Ferrell TL (1991) Influence of metal grain size on surface-enhanced Raman scattering. Phys Rev B 44:6372–6381CrossRef Dawson P, Alexander KB, Thompson JR, Haas JW III, Ferrell TL (1991) Influence of metal grain size on surface-enhanced Raman scattering. Phys Rev B 44:6372–6381CrossRef
Zurück zum Zitat Dawson P, Duenas JA, Boyle MG, Doherty MD, Bell SEJ, Kern AM, Martin OJF, Teh AS, Teo KBK, Milne WI (2011) Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett 11:365–371CrossRef Dawson P, Duenas JA, Boyle MG, Doherty MD, Bell SEJ, Kern AM, Martin OJF, Teh AS, Teo KBK, Milne WI (2011) Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes. Nano Lett 11:365–371CrossRef
Zurück zum Zitat Fang Y, Seong N, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321:388–392CrossRef Fang Y, Seong N, Dlott DD (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321:388–392CrossRef
Zurück zum Zitat Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRef Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166CrossRef
Zurück zum Zitat Jiang WF, Zhang YF, Wang YS, Xu L, Li XJ (2011) SERS activity of au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar. Appl Surf Sci 258:1662–1665CrossRef Jiang WF, Zhang YF, Wang YS, Xu L, Li XJ (2011) SERS activity of au nanoparticles coated on an array of carbon nanotube nested into silicon nanoporous pillar. Appl Surf Sci 258:1662–1665CrossRef
Zurück zum Zitat Karousis N, Tsotsou GE, Evangelista F, Rudolf P, Ragoussis N, Tagmatarchis N (2008) Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity. J Phys Chem C 112:13463–13469CrossRef Karousis N, Tsotsou GE, Evangelista F, Rudolf P, Ragoussis N, Tagmatarchis N (2008) Carbon nanotubes decorated with palladium nanoparticles: synthesis, characterization, and catalytic activity. J Phys Chem C 112:13463–13469CrossRef
Zurück zum Zitat Kneipp K, Wana Y, Kneipp H (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRef Kneipp K, Wana Y, Kneipp H (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670CrossRef
Zurück zum Zitat Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231CrossRef Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231CrossRef
Zurück zum Zitat Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of sers. J Phys Chem C 111:17985–17988CrossRef Lee SJ, Guan ZQ, Xu HX, Moskovits M (2007) Surface-enhanced Raman spectroscopy and nanogeometry: the plasmonic origin of sers. J Phys Chem C 111:17985–17988CrossRef
Zurück zum Zitat Li X, Chen G, Yang L, Jin Z, Liu J (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. J Adv Funct Mater 20:2815–2824CrossRef Li X, Chen G, Yang L, Jin Z, Liu J (2010) Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. J Adv Funct Mater 20:2815–2824CrossRef
Zurück zum Zitat Lin Y, Baggett DW, Kim JW, Siochi EJ, Connell JW (2011) Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating. ACS Appl Mater Interfaces 3:1652–1664CrossRef Lin Y, Baggett DW, Kim JW, Siochi EJ, Connell JW (2011) Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating. ACS Appl Mater Interfaces 3:1652–1664CrossRef
Zurück zum Zitat Norrod KL, Sudnik LM, Rousell D, Rowlen KL (1997) Quantitative comparison of five SERS substrates: sensitivity and limit of detection. Appl Spectropsc 51:994–1001CrossRef Norrod KL, Sudnik LM, Rousell D, Rowlen KL (1997) Quantitative comparison of five SERS substrates: sensitivity and limit of detection. Appl Spectropsc 51:994–1001CrossRef
Zurück zum Zitat Sekhar PK, Ramgir NS, Bhansali S (2008) Metal-decorated silica nanowires: an active surface-enhanced Raman substrate for cancer biomarker detection. J Phys Chem C 112:1729–1734CrossRef Sekhar PK, Ramgir NS, Bhansali S (2008) Metal-decorated silica nanowires: an active surface-enhanced Raman substrate for cancer biomarker detection. J Phys Chem C 112:1729–1734CrossRef
Zurück zum Zitat Shao MW, Zhang ML, Wong NB, Ma DD, Wang H, Chen WW, Lee ST (2008) Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced Raman spectroscopy. Appl Phys Lett 93:233118–233121CrossRef Shao MW, Zhang ML, Wong NB, Ma DD, Wang H, Chen WW, Lee ST (2008) Ag-modified silicon nanowires substrate for ultrasensitive surface-enhanced Raman spectroscopy. Appl Phys Lett 93:233118–233121CrossRef
Zurück zum Zitat Song W, Wang YF, Hu HL, Zhao B (2007) Fabrication of surface-enhanced Raman scattering-active ZnO/Ag composite microspheres. J Raman Spectrosc 38:1320–1325CrossRef Song W, Wang YF, Hu HL, Zhao B (2007) Fabrication of surface-enhanced Raman scattering-active ZnO/Ag composite microspheres. J Raman Spectrosc 38:1320–1325CrossRef
Zurück zum Zitat Sun YH, Liu K, Miao J, Wang ZT, Tian BZ, Zhang LN, Li QQ, Fan SS, Jiang KL (2010) Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett 10:1747–1753CrossRef Sun YH, Liu K, Miao J, Wang ZT, Tian BZ, Zhang LN, Li QQ, Fan SS, Jiang KL (2010) Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes. Nano Lett 10:1747–1753CrossRef
Zurück zum Zitat Sztainbuch IW (2006) The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement. J Chem Phys 125:124707–124718CrossRef Sztainbuch IW (2006) The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement. J Chem Phys 125:124707–124718CrossRef
Zurück zum Zitat Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483CrossRef Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106:9463–9483CrossRef
Zurück zum Zitat Tian ZQ, Ren B, Li JF, Yang ZL (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 43:3514–3534CrossRef Tian ZQ, Ren B, Li JF, Yang ZL (2007) Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun 43:3514–3534CrossRef
Zurück zum Zitat Yang S, Cai W, Kong L, Lei Y (2010) Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv Funct Mater 20:2527–2533CrossRef Yang S, Cai W, Kong L, Lei Y (2010) Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv Funct Mater 20:2527–2533CrossRef
Zurück zum Zitat Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax niomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489CrossRef Zhang XY, Young MA, Lyandres O, Van Duyne RP (2005) Rapid detection of an anthrax niomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc 127:4484–4489CrossRef
Zurück zum Zitat Zhang S, Ni W, Kou X, Yeung MH, Sun L, Wang J, Yan C (2007) Formation of gold and silver nanoparticle arrays and thin shells on mesostructured silica nanofibers. Adv Funct Mater 17:3258–3266CrossRef Zhang S, Ni W, Kou X, Yeung MH, Sun L, Wang J, Yan C (2007) Formation of gold and silver nanoparticle arrays and thin shells on mesostructured silica nanofibers. Adv Funct Mater 17:3258–3266CrossRef
Zurück zum Zitat Zhao XM, Zhang BH, Ai KL, Zhang G, Cao LY, Liu XJ, Sun HM, Wang HS, Lu LH (2009) Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J Mater Chem 19:5547–5553CrossRef Zhao XM, Zhang BH, Ai KL, Zhang G, Cao LY, Liu XJ, Sun HM, Wang HS, Lu LH (2009) Monitoring catalytic degradation of dye molecules on silver-coated ZnO nanowire arrays by surface-enhanced Raman spectroscopy. J Mater Chem 19:5547–5553CrossRef
Metadaten
Titel
Vertically aligned multi-walled CNT arrays coated by gold nanoparticles for surface-enhanced Raman scattering
verfasst von
Jie Zhang
Yulin Chen
Tuo Fan
Chunhong Lai
Yong Zhu
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2014
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-013-1796-x

Weitere Artikel der Ausgabe 1/2014

Microsystem Technologies 1/2014 Zur Ausgabe

Neuer Inhalt