Skip to main content
Erschienen in: Archive of Applied Mechanics 9/2020

26.05.2020 | Original

Vibration analysis of coupled straight–curved beam systems with arbitrary discontinuities subjected to various harmonic forces

verfasst von: Jinpeng Su, Kun Zhang, Qiang Zhang, Ying Tian

Erschienen in: Archive of Applied Mechanics | Ausgabe 9/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a modified variational method is developed to study the free and forced vibration of coupled straight–curved beam systems with an arbitrary number of eccentric discontinuities (EDs). Based on the generalized shell theory, the kinetic and potential functional of the curved beam with arbitrary subtended angles is formulated. Since the shear and inertial (or radial–tangential–rotational coupling) effects are included for the curved beam, the longitudinal vibration is also introduced to the energy functional for a straight Timoshenko beam. Using corresponding coordinate transformations, the Lagrange multiplier method and least-square weighted residual method are employed to impose the continuity constraints on the internal interfaces and boundaries among the straight and curved beams. The proposed method allows a flexible choice of the admissible functions and can be used for various combinations of the straight and curved beams to model corresponding engineering structures. Concentrated forces, uniformly distributed loads and space-dependent loads are considered to demonstrate great efficiency and accuracy of the present approach for the forced as well as the free vibration of the coupled system. Most of the present results are compared with those from finite element program ANSYS, and good agreement is observed. Influences of the EDs on the dynamic responses of the coupled system are also examined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hajianmaleki, M., Qatu, M.S.: Vibrations of straight and curved composite beams: a review. Compos. Struct. 100, 218–232 (2013)CrossRef Hajianmaleki, M., Qatu, M.S.: Vibrations of straight and curved composite beams: a review. Compos. Struct. 100, 218–232 (2013)CrossRef
2.
Zurück zum Zitat Zhang, Z., Huang, X., Zhang, Z., Hua, H.: On the transverse vibration of Timoshenko double-beam systems coupled with various discontinuities. Int. J. Mech. Sci. 89, 222–241 (2014)CrossRef Zhang, Z., Huang, X., Zhang, Z., Hua, H.: On the transverse vibration of Timoshenko double-beam systems coupled with various discontinuities. Int. J. Mech. Sci. 89, 222–241 (2014)CrossRef
3.
Zurück zum Zitat Mokhtari, A., Mirdamadi, H.R.: Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: non-transforming spectral element analysis. Appl. Math. Model. 56, 342–358 (2018)MathSciNetCrossRef Mokhtari, A., Mirdamadi, H.R.: Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: non-transforming spectral element analysis. Appl. Math. Model. 56, 342–358 (2018)MathSciNetCrossRef
4.
Zurück zum Zitat Mei, C.: Studying the effects of lumped end mass on vibrations of a Timoshenko beam using a wave-based approach. J. Vib. Control 18(5), 733–742 (2012)MathSciNetCrossRef Mei, C.: Studying the effects of lumped end mass on vibrations of a Timoshenko beam using a wave-based approach. J. Vib. Control 18(5), 733–742 (2012)MathSciNetCrossRef
5.
Zurück zum Zitat Lei, Z., Su, J., Hua, H.: Longitudinal and transverse coupling dynamic properties of a Timoshenko beam with mass eccentricity. Int. J. Struct. Stab. Dyn. 17(7), 1–17 (2017)MathSciNetCrossRef Lei, Z., Su, J., Hua, H.: Longitudinal and transverse coupling dynamic properties of a Timoshenko beam with mass eccentricity. Int. J. Struct. Stab. Dyn. 17(7), 1–17 (2017)MathSciNetCrossRef
6.
Zurück zum Zitat Su, J., Lei, Z., Hua, H.: Axial-bending coupling vibration of mass eccentric double-beam system with discrete elastic connections. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 231(2), 555–568 (2017) Su, J., Lei, Z., Hua, H.: Axial-bending coupling vibration of mass eccentric double-beam system with discrete elastic connections. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 231(2), 555–568 (2017)
7.
Zurück zum Zitat Rao, S.S., Sundararajan, V.: In-plane flexural vibrations of circular rings. J. Appl. Mech. ASME 36, 620–625 (1969)CrossRef Rao, S.S., Sundararajan, V.: In-plane flexural vibrations of circular rings. J. Appl. Mech. ASME 36, 620–625 (1969)CrossRef
8.
Zurück zum Zitat Huang, X., Hua, H., Wang, Y., Du, Z.: Research on wave mode conversion of curved beam structures by the wave approach. J. Vib. Acoust. 135(3), 031014 (2013)CrossRef Huang, X., Hua, H., Wang, Y., Du, Z.: Research on wave mode conversion of curved beam structures by the wave approach. J. Vib. Acoust. 135(3), 031014 (2013)CrossRef
9.
Zurück zum Zitat Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite-elements. J. Sound Vib. 31, 315–330 (1973)CrossRef Thomas, D.L., Wilson, J.M., Wilson, R.R.: Timoshenko beam finite-elements. J. Sound Vib. 31, 315–330 (1973)CrossRef
10.
Zurück zum Zitat Raveendranath, P., Singh, G., Rao, G.V.: A three-node shear-flexible curved beam element based on coupled displacement field interpolations. Int. J. Numer. Methods Eng. 51, 85–101 (2001)CrossRef Raveendranath, P., Singh, G., Rao, G.V.: A three-node shear-flexible curved beam element based on coupled displacement field interpolations. Int. J. Numer. Methods Eng. 51, 85–101 (2001)CrossRef
11.
Zurück zum Zitat Zhu, Z.H., Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1), 86–95 (2008)CrossRef Zhu, Z.H., Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1), 86–95 (2008)CrossRef
12.
Zurück zum Zitat Yang, F., Sedaghati, R., Esmailzadeh, E.: Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318(4), 850–867 (2008)CrossRef Yang, F., Sedaghati, R., Esmailzadeh, E.: Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318(4), 850–867 (2008)CrossRef
13.
Zurück zum Zitat Cannarozzi, M., Molari, L.: A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int. J. Numer. Methods Eng. 74, 116–137 (2008)MathSciNetCrossRef Cannarozzi, M., Molari, L.: A mixed stress model for linear elastodynamics of arbitrarily curved beams. Int. J. Numer. Methods Eng. 74, 116–137 (2008)MathSciNetCrossRef
14.
Zurück zum Zitat Kim, J.G., Park, Y.K.: Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int. J. Numer. Methods Eng. 68, 690–706 (2006)CrossRef Kim, J.G., Park, Y.K.: Hybrid-mixed curved beam elements with increased degrees of freedom for static and vibration analyses. Int. J. Numer. Methods Eng. 68, 690–706 (2006)CrossRef
15.
Zurück zum Zitat Kim, J.G., Lee, J.K.: Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions. Comput. Struct. 86, 1672–1681 (2008)CrossRef Kim, J.G., Lee, J.K.: Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions. Comput. Struct. 86, 1672–1681 (2008)CrossRef
16.
Zurück zum Zitat Luu, A.T., Kim, N.I., Lee, J.: Isogeometric vibration analysis of free-form Timoshenko curved beams. Meccanica 50(1), 169–187 (2015)MathSciNetCrossRef Luu, A.T., Kim, N.I., Lee, J.: Isogeometric vibration analysis of free-form Timoshenko curved beams. Meccanica 50(1), 169–187 (2015)MathSciNetCrossRef
17.
Zurück zum Zitat Chen, C.N.: DQEM analysis of in-plane vibration of curved beam structures. Adv. Eng. Softw. 36(6), 412–424 (2005)CrossRef Chen, C.N.: DQEM analysis of in-plane vibration of curved beam structures. Adv. Eng. Softw. 36(6), 412–424 (2005)CrossRef
18.
Zurück zum Zitat He, X.T., Li, X., Li, W.M., Sun, J.Y.: Bending analysis of functionally graded curved beams with different properties in tension and compression. Arch. Appl. Mech. 89, 1973–1994 (2019)CrossRef He, X.T., Li, X., Li, W.M., Sun, J.Y.: Bending analysis of functionally graded curved beams with different properties in tension and compression. Arch. Appl. Mech. 89, 1973–1994 (2019)CrossRef
19.
Zurück zum Zitat Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)CrossRef Ansari, R., Gholami, R., Sahmani, S.: Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch. Appl. Mech. 83, 1439–1449 (2013)CrossRef
20.
Zurück zum Zitat Ebrahimi, F., Barati, M.R.: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017)CrossRef Ebrahimi, F., Barati, M.R.: A nonlocal strain gradient refined beam model for buckling analysis of size-dependent shear-deformable curved FG nanobeams. Compos. Struct. 159, 174–182 (2017)CrossRef
21.
Zurück zum Zitat Ebrahimi, F., Barati, M.R.: Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(25), 4457–4469 (2017)CrossRef Ebrahimi, F., Barati, M.R.: Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(25), 4457–4469 (2017)CrossRef
22.
Zurück zum Zitat Ebrahimi, F., Barati, M.R.: Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory. Mech. Adv. Mater. Struct. 25(4), 350–359 (2016)CrossRef Ebrahimi, F., Barati, M.R.: Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory. Mech. Adv. Mater. Struct. 25(4), 350–359 (2016)CrossRef
23.
Zurück zum Zitat Ebrahimi, F., Barati, M.R., Mahesh, V.: Dynamic modeling of smart magneto-electro-elastic curved nanobeams. Adv. Nano Res. 7(3), 145 (2019) Ebrahimi, F., Barati, M.R., Mahesh, V.: Dynamic modeling of smart magneto-electro-elastic curved nanobeams. Adv. Nano Res. 7(3), 145 (2019)
24.
Zurück zum Zitat Kang, B., Riedel, C.H., Tan, C.A.: Free vibration analysis of planar curved beams by wave propagation. J. Sound Vib. 260(1), 19–44 (2003)CrossRef Kang, B., Riedel, C.H., Tan, C.A.: Free vibration analysis of planar curved beams by wave propagation. J. Sound Vib. 260(1), 19–44 (2003)CrossRef
25.
Zurück zum Zitat Kang, B., Riedel, C.H.: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes. Wave Motion 49(1), 1–23 (2012)MathSciNetCrossRef Kang, B., Riedel, C.H.: On the validity of planar, thick curved beam models derived with respect to centroidal and neutral axes. Wave Motion 49(1), 1–23 (2012)MathSciNetCrossRef
26.
Zurück zum Zitat Wu, J.S., Lin, F.T., Shaw, H.J.: Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl. Math. Model. 37(14), 7588–7610 (2013)MathSciNetCrossRef Wu, J.S., Lin, F.T., Shaw, H.J.: Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Appl. Math. Model. 37(14), 7588–7610 (2013)MathSciNetCrossRef
27.
Zurück zum Zitat Arici, M., Granata, M.F., Margiotta, P.: Hamiltonian structural analysis of curved beams with or without generalized two-parameter foundation. Arch. Appl. Mech. 83(12), 1695–1714 (2013)CrossRef Arici, M., Granata, M.F., Margiotta, P.: Hamiltonian structural analysis of curved beams with or without generalized two-parameter foundation. Arch. Appl. Mech. 83(12), 1695–1714 (2013)CrossRef
28.
Zurück zum Zitat Chouvion, B., Fox, C.H.J., Mcwilliam, S., Popov, A.A.: In-plane free vibration analysis of combined ring-beam structural systems by wave propagation. J. Sound Vib. 329(26), 5087–5104 (2010)CrossRef Chouvion, B., Fox, C.H.J., Mcwilliam, S., Popov, A.A.: In-plane free vibration analysis of combined ring-beam structural systems by wave propagation. J. Sound Vib. 329(26), 5087–5104 (2010)CrossRef
29.
Zurück zum Zitat Zhao, Y., Kang, H.: In-plane free vibration analysis of cable–arch structure. J. Sound Vib. 312(3), 363–379 (2008)CrossRef Zhao, Y., Kang, H.: In-plane free vibration analysis of cable–arch structure. J. Sound Vib. 312(3), 363–379 (2008)CrossRef
30.
Zurück zum Zitat Su, J., Zhou, K., Qu, Y., Hua, H.: A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Arch. Appl. Mech. 88(7), 1089–1104 (2018)CrossRef Su, J., Zhou, K., Qu, Y., Hua, H.: A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Arch. Appl. Mech. 88(7), 1089–1104 (2018)CrossRef
31.
Zurück zum Zitat Kim, J.G., Lee, J.K., Yoon, H.J.: On the effect of shear coefficients in free vibration analysis of curved beams. J. Mech. Sci. Technol. 28(8), 3181–3187 (2014)CrossRef Kim, J.G., Lee, J.K., Yoon, H.J.: On the effect of shear coefficients in free vibration analysis of curved beams. J. Mech. Sci. Technol. 28(8), 3181–3187 (2014)CrossRef
32.
Zurück zum Zitat Magrab, E.B.: Vibrations of Elastic Systems: With Applications to MEMS and NEMS. Springer, Berlin (2012)CrossRef Magrab, E.B.: Vibrations of Elastic Systems: With Applications to MEMS and NEMS. Springer, Berlin (2012)CrossRef
33.
Zurück zum Zitat Jeffery, A., Dai, H.H.: Handbook of Mathematical Formulas and Integrals, 4th edn. Academic Press, California (2008) Jeffery, A., Dai, H.H.: Handbook of Mathematical Formulas and Integrals, 4th edn. Academic Press, California (2008)
34.
Zurück zum Zitat Fu, Z., Hua, H.: Modal Analysis Theory and Application. Shanghai Jiao Tong University Press, Shanghai (2000) Fu, Z., Hua, H.: Modal Analysis Theory and Application. Shanghai Jiao Tong University Press, Shanghai (2000)
35.
Zurück zum Zitat Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G.: Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Appl. Acoust. 74(3), 425–439 (2013)CrossRef Qu, Y., Chen, Y., Long, X., Hua, H., Meng, G.: Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Appl. Acoust. 74(3), 425–439 (2013)CrossRef
Metadaten
Titel
Vibration analysis of coupled straight–curved beam systems with arbitrary discontinuities subjected to various harmonic forces
verfasst von
Jinpeng Su
Kun Zhang
Qiang Zhang
Ying Tian
Publikationsdatum
26.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 9/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01709-z

Weitere Artikel der Ausgabe 9/2020

Archive of Applied Mechanics 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.