2014 | OriginalPaper | Buchkapitel
Video-Based Self-positioning for Intelligent Transportation Systems Applications
verfasst von : Parag S. Chandakkar, Ragav Venkatesan, Baoxin Li
Erschienen in: Advances in Visual Computing
Verlag: Springer International Publishing
Many urban areas face traffic congestion. Automatic traffic management systems and congestion pricing are getting prominence in recent research. An important stage in such systems is lane prediction and on-road self-positioning. We introduce a novel problem of vehicle self-positioning which involves predicting the number of lanes on the road and localizing the vehicle within those lanes, using the video captured by a dashboard camera. To overcome the disadvantages of most existing low-level vision-based techniques while tackling this complex problem, we formulate a model in which the video is a key observation. The model consists of the number of lanes and vehicle position in those lanes as parameters, hence allowing the use of high-level semantic knowledge. Under this formulation, we employ a lane-width-based model and a maximum-likelihood-estimator making the method tolerant to slight viewing angle variation. The overall approach is tested on real-world videos and is found to be effective.