Skip to main content

2019 | OriginalPaper | Buchkapitel

Video Tamper Detection Based on Convolutional Neural Network and Perceptual Hashing Learning

verfasst von : Huisi Wu, Yawen Zhou, Zhenkun Wen

Erschienen in: Advances in Computer Graphics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Perceptual hashing has been widely used in the field of multimedia security. The difficulty of the traditional perceptual hashing algorithm is to find suitable perceptual features. In this paper, we propose a perceptual hashing learning method for tamper detection based on convolutional neural network, where a hashing layer in the convolutional neural network is introduced to learn the features and hash functions. Specifically, the video is decomposed to obtain temporal representative frame (TRF) sequences containing temporal and spatial domain information. Convolutional neural network is then used to learn visual features of each TRF. We further put each feature into the hashing layer to learn independent hash functions and fuse these features to generate the video hash. Finally, the hash functions and the corresponding video hash are obtained by minimizing the classification loss and quantization error loss. Experimental results and comparisons with state-of-the-art methods show that the algorithm has better classification performance and can effectively perform tamper detection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Niu, X., Jiao, Y.: An overview of perceptual hashing. Acta Electronica Sinica 36(7), 1405–1411 (2008) Niu, X., Jiao, Y.: An overview of perceptual hashing. Acta Electronica Sinica 36(7), 1405–1411 (2008)
2.
Zurück zum Zitat Schneider, M., Chang, S.-F.: A robust content based digital signature for image authentication. In: 1996 Proceedings of International Conference on Image Processing, vol. 3, pp. 227–230. IEEE (1996) Schneider, M., Chang, S.-F.: A robust content based digital signature for image authentication. In: 1996 Proceedings of International Conference on Image Processing, vol. 3, pp. 227–230. IEEE (1996)
3.
Zurück zum Zitat Lu, J.: Video fingerprinting for copy identification: from research to industry applications. In: Media Forensics and Security, vol. 7254, p. 725402. International Society for Optics and Photonics (2009) Lu, J.: Video fingerprinting for copy identification: from research to industry applications. In: Media Forensics and Security, vol. 7254, p. 725402. International Society for Optics and Photonics (2009)
4.
Zurück zum Zitat Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. IEEE Comput. Sci. Eng. 4(4), 10–21 (1997)CrossRef Wolfson, H.J., Rigoutsos, I.: Geometric hashing: an overview. IEEE Comput. Sci. Eng. 4(4), 10–21 (1997)CrossRef
5.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
6.
Zurück zum Zitat Han, D., Liu, Q., Fan, W.: A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 95, 43–56 (2018)CrossRef Han, D., Liu, Q., Fan, W.: A new image classification method using CNN transfer learning and web data augmentation. Expert Syst. Appl. 95, 43–56 (2018)CrossRef
7.
Zurück zum Zitat Lee, S., Yoo, C.D.: Video fingerprinting based on centroids of gradient orientations. In: Proceedings of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 2, p. II. IEEE (2006) Lee, S., Yoo, C.D.: Video fingerprinting based on centroids of gradient orientations. In: Proceedings of 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 2, p. II. IEEE (2006)
8.
Zurück zum Zitat De Roover, C., De Vleeschouwer, C., Lefebvre, F., Macq, B.: Robust video hashing based on radial projections of key frames. IEEE Trans. Sig. Process. 53(10), 4020–4037 (2005)MathSciNetCrossRef De Roover, C., De Vleeschouwer, C., Lefebvre, F., Macq, B.: Robust video hashing based on radial projections of key frames. IEEE Trans. Sig. Process. 53(10), 4020–4037 (2005)MathSciNetCrossRef
9.
Zurück zum Zitat Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Trans. Multimedia 8(6), 1190–1208 (2006)CrossRef Coskun, B., Sankur, B., Memon, N.: Spatio-temporal transform based video hashing. IEEE Trans. Multimedia 8(6), 1190–1208 (2006)CrossRef
10.
Zurück zum Zitat Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Sig. Process. Lett. 22(11), 1849–1853 (2015)CrossRef Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Sig. Process. Lett. 22(11), 1849–1853 (2015)CrossRef
11.
Zurück zum Zitat Yao, Y., Shi, Y., Weng, S., Guan, B.: Deep learning for detection of object-based forgery in advanced video. Symmetry 10(1), 3 (2017)CrossRef Yao, Y., Shi, Y., Weng, S., Guan, B.: Deep learning for detection of object-based forgery in advanced video. Symmetry 10(1), 3 (2017)CrossRef
12.
Zurück zum Zitat Liu, X., Sun, J., Liu, J.: Shot-based temporally respective frame generation algorithm for video hashing. In: IEEE International Workshop on Information Forensics and Security (WIFS), pp. 109–114. IEEE (2013) Liu, X., Sun, J., Liu, J.: Shot-based temporally respective frame generation algorithm for video hashing. In: IEEE International Workshop on Information Forensics and Security (WIFS), pp. 109–114. IEEE (2013)
13.
Zurück zum Zitat Wang, X., Gao, L., Song, J., Shen, H.: Beyond frame-level CNN: saliency-aware 3-D CNN with LSTM for video action recognition. IEEE Sig. Process. Lett. 24(4), 510–514 (2017)CrossRef Wang, X., Gao, L., Song, J., Shen, H.: Beyond frame-level CNN: saliency-aware 3-D CNN with LSTM for video action recognition. IEEE Sig. Process. Lett. 24(4), 510–514 (2017)CrossRef
14.
Zurück zum Zitat Peng, T., Li, F.: Image retrieval based on deep convolutional neural networks and binary hashing learning. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1742–1746. IEEE (2017) Peng, T., Li, F.: Image retrieval based on deep convolutional neural networks and binary hashing learning. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1742–1746. IEEE (2017)
15.
Zurück zum Zitat Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012) Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:​1212.​0402 (2012)
16.
Zurück zum Zitat Chen, S., Tan, S., Li, B., Huang, J.: Automatic detection of object-based forgery in advanced video. IEEE Trans. Circ. Syst. Video Technol. 26(11), 2138–2151 (2016)CrossRef Chen, S., Tan, S., Li, B., Huang, J.: Automatic detection of object-based forgery in advanced video. IEEE Trans. Circ. Syst. Video Technol. 26(11), 2138–2151 (2016)CrossRef
17.
Zurück zum Zitat Lee, S., Yoo, C.D.: Robust video fingerprinting for content-based video identification. IEEE Trans. Circ. Syst. Video Technol. 18(7), 983–988 (2008)CrossRef Lee, S., Yoo, C.D.: Robust video fingerprinting for content-based video identification. IEEE Trans. Circ. Syst. Video Technol. 18(7), 983–988 (2008)CrossRef
18.
Zurück zum Zitat Saikia, N.: Perceptual hashing in the 3D-DWT domain. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 694–698. IEEE (2015) Saikia, N.: Perceptual hashing in the 3D-DWT domain. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 694–698. IEEE (2015)
19.
Zurück zum Zitat Nie, X., Liu, J., Sun, J., Zhao, H.: Key-frame based robust video hashing using isometric feature mapping. J. Comput. Inf. Syst. 7(6), 2112–2119 (2011) Nie, X., Liu, J., Sun, J., Zhao, H.: Key-frame based robust video hashing using isometric feature mapping. J. Comput. Inf. Syst. 7(6), 2112–2119 (2011)
Metadaten
Titel
Video Tamper Detection Based on Convolutional Neural Network and Perceptual Hashing Learning
verfasst von
Huisi Wu
Yawen Zhou
Zhenkun Wen
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_9