Skip to main content
Erschienen in: Microsystem Technologies 2/2019

30.07.2018 | Technical Paper

Viscoelastically coupled dynamics of FG Timoshenko microbeams

verfasst von: Mergen H. Ghayesh

Erschienen in: Microsystem Technologies | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Viscosity effects on the mechanical behaviour of functionally graded (FG) Timoshenko microbeams are investigated; the model possesses both linear nonlinear viscous terms. The Mori–Tanaka homogenisation method is used for the continuous variations of the material properties of the microsystem along the thickness; the Kelvin–Voigt scheme is employed for the internal damping; the shear deformation and rotary inertia are modelled for the viscoelastic microbeam via the Timoshenko theory; the modified couple stress theory is used for size influences. An energy loss/balance via Hamilton’s principle is used for obtaining the equations of motion. Galerkin’s approach together with a continuation method is employed for the mechanical responses. The simultaneous effects of viscosity, being small, and FG materials on the mechanical behaviour are investigated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrianov IV, Awrejcewicz J, Diskovsky AA (2017) Functionally graded rod with small concentration of inclusions: homogenization and optimization. Int J Non Linear Mech 91:189–197CrossRef Andrianov IV, Awrejcewicz J, Diskovsky AA (2017) Functionally graded rod with small concentration of inclusions: homogenization and optimization. Int J Non Linear Mech 91:189–197CrossRef
Zurück zum Zitat Arani AG, Jafari GS, Kolahchi R (2017) Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst Technol 23(5):1509–1535CrossRef Arani AG, Jafari GS, Kolahchi R (2017) Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst Technol 23(5):1509–1535CrossRef
Zurück zum Zitat Asghari M, Rahaeifard M, Kahrobaiyan MH et al (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32:1435–1443CrossRef Asghari M, Rahaeifard M, Kahrobaiyan MH et al (2011) The modified couple stress functionally graded Timoshenko beam formulation. Mater Des 32:1435–1443CrossRef
Zurück zum Zitat Attia MA (2017) Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica 52(10):2391–2420MathSciNetCrossRef Attia MA (2017) Investigation of size-dependent quasistatic response of electrically actuated nonlinear viscoelastic microcantilevers and microbridges. Meccanica 52(10):2391–2420MathSciNetCrossRef
Zurück zum Zitat Awrejcewicz J, Krysko A, Pavlov S et al (2017a) Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness. Mech Syst Signal Process 93:415–430CrossRef Awrejcewicz J, Krysko A, Pavlov S et al (2017a) Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness. Mech Syst Signal Process 93:415–430CrossRef
Zurück zum Zitat Awrejcewicz J, Krysko AV, Pavlov SP et al (2017b) Stability of the size-dependent and functionally graded curvilinear Timoshenko beams. ASME J Comput Nonlinear Dyn 12:041018-1–041018-8 Awrejcewicz J, Krysko AV, Pavlov SP et al (2017b) Stability of the size-dependent and functionally graded curvilinear Timoshenko beams. ASME J Comput Nonlinear Dyn 12:041018-1–041018-8
Zurück zum Zitat Azimi M, Mirjavadi SS, Shafiei N et al (2016) Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam. Appl Phys A 123:104CrossRef Azimi M, Mirjavadi SS, Shafiei N et al (2016) Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam. Appl Phys A 123:104CrossRef
Zurück zum Zitat Benedettini F, Rega G (1987) Non-linear dynamics of an elastic cable under planar excitation. Int J Non Linear Mech 22:497–509CrossRefMATH Benedettini F, Rega G (1987) Non-linear dynamics of an elastic cable under planar excitation. Int J Non Linear Mech 22:497–509CrossRefMATH
Zurück zum Zitat Bethe K, Baumgarten D, Frank J (1990) Creep of sensor’s elastic elements: metals versus non-metals. Sens Actuators A 23:844–849CrossRef Bethe K, Baumgarten D, Frank J (1990) Creep of sensor’s elastic elements: metals versus non-metals. Sens Actuators A 23:844–849CrossRef
Zurück zum Zitat Calim FF (2016) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos B Eng 103:98–112CrossRef Calim FF (2016) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos B Eng 103:98–112CrossRef
Zurück zum Zitat Chorsi MT, Chorsi HT (2018) Modeling and analysis of MEMS disk resonators. Microsyst Technol 24(6):2517–2528CrossRef Chorsi MT, Chorsi HT (2018) Modeling and analysis of MEMS disk resonators. Microsyst Technol 24(6):2517–2528CrossRef
Zurück zum Zitat Deng H, Chen K, Cheng W et al (2017) Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler–Pasternak elastic foundation. Compos Struct 160:152–168CrossRef Deng H, Chen K, Cheng W et al (2017) Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler–Pasternak elastic foundation. Compos Struct 160:152–168CrossRef
Zurück zum Zitat Eltaher MA, Khairy A, Sadoun AM et al (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295MathSciNetMATH Eltaher MA, Khairy A, Sadoun AM et al (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283–295MathSciNetMATH
Zurück zum Zitat Farokhi H, Ghayesh MH (2015a) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144CrossRef Farokhi H, Ghayesh MH (2015a) Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int J Mech Sci 90:133–144CrossRef
Zurück zum Zitat Farokhi H, Ghayesh MH (2015b) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33MathSciNetCrossRefMATH Farokhi H, Ghayesh MH (2015b) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33MathSciNetCrossRefMATH
Zurück zum Zitat Farokhi H, Ghayesh MH (2017) Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Design 13(1):43–55CrossRef Farokhi H, Ghayesh MH (2017) Nonlinear resonant response of imperfect extensible Timoshenko microbeams. Int J Mech Mater Design 13(1):43–55CrossRef
Zurück zum Zitat Farokhi H, Ghayesh MH (2018a) Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun Nonlinear Sci Numer Simul 59:592–605MathSciNetCrossRef Farokhi H, Ghayesh MH (2018a) Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun Nonlinear Sci Numer Simul 59:592–605MathSciNetCrossRef
Zurück zum Zitat Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23MathSciNetCrossRefMATH Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23MathSciNetCrossRefMATH
Zurück zum Zitat Farokhi H, Ghayesh MH, Hussain Sh (2016) Large-amplitude dynamical behaviour of microcantilevers. Int J Eng Sci 106:29–41CrossRefMATH Farokhi H, Ghayesh MH, Hussain Sh (2016) Large-amplitude dynamical behaviour of microcantilevers. Int J Eng Sci 106:29–41CrossRefMATH
Zurück zum Zitat Farokhi H, Ghayesh MH, Gholipour A et al (2017) Motion characteristics of bilayered extensible Timoshenko microbeams. Int J Eng Sci 112:1–17MathSciNetCrossRefMATH Farokhi H, Ghayesh MH, Gholipour A et al (2017) Motion characteristics of bilayered extensible Timoshenko microbeams. Int J Eng Sci 112:1–17MathSciNetCrossRefMATH
Zurück zum Zitat Gaafar E, Zarog M (2017) A low-stress and low temperature gradient microgripper for biomedical applications. Microsyst Technol 23:5415–5422CrossRef Gaafar E, Zarog M (2017) A low-stress and low temperature gradient microgripper for biomedical applications. Microsyst Technol 23:5415–5422CrossRef
Zurück zum Zitat Ghayesh MH (2017) Nonlinear dynamics of multilayered microplates. J Comput Nonlinear Dyn 13:021006–021012CrossRef Ghayesh MH (2017) Nonlinear dynamics of multilayered microplates. J Comput Nonlinear Dyn 13:021006–021012CrossRef
Zurück zum Zitat Ghayesh MH (2018b) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350CrossRef Ghayesh MH (2018b) Functionally graded microbeams: simultaneous presence of imperfection and viscoelasticity. Int J Mech Sci 140:339–350CrossRef
Zurück zum Zitat Ghayesh MH (2018c) Mechanics of tapered AFG shear-deformable microbeams. Microsyst Technol 24:1743–1754CrossRef Ghayesh MH (2018c) Mechanics of tapered AFG shear-deformable microbeams. Microsyst Technol 24:1743–1754CrossRef
Zurück zum Zitat Ghayesh MH (2018d) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl Math Model 59:583–596MathSciNetCrossRef Ghayesh MH (2018d) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl Math Model 59:583–596MathSciNetCrossRef
Zurück zum Zitat Ghayesh MH (2018e) Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. J Comput Nonlinear Dyn 13:041002–041010CrossRef Ghayesh MH (2018e) Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. J Comput Nonlinear Dyn 13:041002–041010CrossRef
Zurück zum Zitat Ghayesh MH, Amabili M, Farokhi H (2013a) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14MathSciNetCrossRefMATH Ghayesh MH, Amabili M, Farokhi H (2013a) Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int J Eng Sci 71:1–14MathSciNetCrossRefMATH
Zurück zum Zitat Ghayesh MH, Farokhi H, Amabili M (2013b) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng 50:318–324CrossRefMATH Ghayesh MH, Farokhi H, Amabili M (2013b) Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos B Eng 50:318–324CrossRefMATH
Zurück zum Zitat Ghayesh MH, Farokhi H, Amabili M (2013c) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155CrossRefMATH Ghayesh MH, Farokhi H, Amabili M (2013c) Nonlinear behaviour of electrically actuated MEMS resonators. Int J Eng Sci 71:137–155CrossRefMATH
Zurück zum Zitat Ghayesh MH, Amabili M, Farokhi H (2013d) Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci 63:52–60MathSciNetCrossRefMATH Ghayesh MH, Amabili M, Farokhi H (2013d) Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci 63:52–60MathSciNetCrossRefMATH
Zurück zum Zitat Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos B Eng 60:423–439CrossRef Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos B Eng 60:423–439CrossRef
Zurück zum Zitat Ghayesh MH, Farokhi H, Gholipour A (2017b) Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams. Int J Mech Sci 122:370–383CrossRef Ghayesh MH, Farokhi H, Gholipour A (2017b) Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams. Int J Mech Sci 122:370–383CrossRef
Zurück zum Zitat Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2018) Nonlinear oscillations of functionally graded microplates. Int J Eng Sci 122:56–72CrossRefMATH Ghayesh MH, Farokhi H, Gholipour A, Tavallaeinejad M (2018) Nonlinear oscillations of functionally graded microplates. Int J Eng Sci 122:56–72CrossRefMATH
Zurück zum Zitat Ghayesh MH, Farokhi H, Hussain Sh (2016) Viscoelastically coupled size-dependent dynamics of microbeams. Int J Eng Sci 109:243–255MathSciNetCrossRefMATH Ghayesh MH, Farokhi H, Hussain Sh (2016) Viscoelastically coupled size-dependent dynamics of microbeams. Int J Eng Sci 109:243–255MathSciNetCrossRefMATH
Zurück zum Zitat Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785CrossRef Gholipour A, Farokhi H, Ghayesh MH (2015) In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn 79:1771–1785CrossRef
Zurück zum Zitat Hamzah MH, Karim J, Ralib AAM et al (2018) Design and analysis of a boosted pierce oscillator using MEMS SAW resonators. Microsyst Technol 24(1):587–594CrossRef Hamzah MH, Karim J, Ralib AAM et al (2018) Design and analysis of a boosted pierce oscillator using MEMS SAW resonators. Microsyst Technol 24(1):587–594CrossRef
Zurück zum Zitat Hari K, Verma SK, Praveen Krishna IR et al (2018) Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity. Microsyst Technol 24(5):2437–2444CrossRef Hari K, Verma SK, Praveen Krishna IR et al (2018) Out-of-plane dual flexure MEMS piezoresistive accelerometer with low cross axis sensitivity. Microsyst Technol 24(5):2437–2444CrossRef
Zurück zum Zitat Li C, Cordovilla F, Ocaña JL (2017) The design and analysis of a novel structural piezoresistive pressure sensor for low pressure measurement. Microsyst Technol 23:5677–5687CrossRef Li C, Cordovilla F, Ocaña JL (2017) The design and analysis of a novel structural piezoresistive pressure sensor for low pressure measurement. Microsyst Technol 23:5677–5687CrossRef
Zurück zum Zitat Liu F, Gao S, Niu S et al (2018) Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory. Microsyst Technol 24(2):855–867CrossRef Liu F, Gao S, Niu S et al (2018) Optimal design of high-g MEMS piezoresistive accelerometer based on Timoshenko beam theory. Microsyst Technol 24(2):855–867CrossRef
Zurück zum Zitat Lotfi M, Moghimi Zand M, Isaac Hosseini I et al (2017) Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams. Microsyst Technol 23:6015–6023CrossRef Lotfi M, Moghimi Zand M, Isaac Hosseini I et al (2017) Transient behavior and dynamic pull-in instability of electrostatically-actuated fluid-conveying microbeams. Microsyst Technol 23:6015–6023CrossRef
Zurück zum Zitat Ma LY, Nordin AN, Soin N (2018) A novel design of a low-voltage low-loss T-match RF-MEMS capacitive switch. Microsyst Technol 24(1):561–574CrossRef Ma LY, Nordin AN, Soin N (2018) A novel design of a low-voltage low-loss T-match RF-MEMS capacitive switch. Microsyst Technol 24(1):561–574CrossRef
Zurück zum Zitat Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(5):2199–2213CrossRef Menon PK, Nayak J, Pratap R (2018) Sensitivity analysis of an in-plane MEMS vibratory gyroscope. Microsyst Technol 24(5):2199–2213CrossRef
Zurück zum Zitat Ouakad HM (2017) Comprehensive numerical modeling of the nonlinear structural behavior of MEMS/NEMS electrostatic actuators under the effect of the van der Waals forces. Microsyst Technol 23:5903–5910CrossRef Ouakad HM (2017) Comprehensive numerical modeling of the nonlinear structural behavior of MEMS/NEMS electrostatic actuators under the effect of the van der Waals forces. Microsyst Technol 23:5903–5910CrossRef
Zurück zum Zitat Paul A, Das D (2016) Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method. Eng Sci Technol Int J 19:1003–1017CrossRef Paul A, Das D (2016) Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method. Eng Sci Technol Int J 19:1003–1017CrossRef
Zurück zum Zitat Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos B Eng 51:175–184CrossRef Pradhan KK, Chakraverty S (2013) Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh–Ritz method. Compos B Eng 51:175–184CrossRef
Zurück zum Zitat Samaali H, Najar F (2017) Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage. Microsyst Technol 23:5317–5327CrossRef Samaali H, Najar F (2017) Design of a capacitive MEMS double beam switch using dynamic pull-in actuation at very low voltage. Microsyst Technol 23:5317–5327CrossRef
Zurück zum Zitat Saxena S, Sharma R, Pant BD (2017) Dynamic characterization of fabricated guided two beam and four beam cantilever type MEMS based piezoelectric energy harvester having pyramidal shape seismic mass. Microsyst Technol 23:5947–5958CrossRef Saxena S, Sharma R, Pant BD (2017) Dynamic characterization of fabricated guided two beam and four beam cantilever type MEMS based piezoelectric energy harvester having pyramidal shape seismic mass. Microsyst Technol 23:5947–5958CrossRef
Zurück zum Zitat Shi H, Fan S, Zhang Y (2017) Design and optimization of slit-resonant beam in a MEMS pressure sensor based on uncertainty analysis. Microsyst Technol 23:5545–5559CrossRef Shi H, Fan S, Zhang Y (2017) Design and optimization of slit-resonant beam in a MEMS pressure sensor based on uncertainty analysis. Microsyst Technol 23:5545–5559CrossRef
Zurück zum Zitat Tang AY, Wu JX, Li XF et al (2014) Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int J Mech Sci 89:1–11CrossRef Tang AY, Wu JX, Li XF et al (2014) Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int J Mech Sci 89:1–11CrossRef
Zurück zum Zitat Teh KS, Lin L (1999) Time-dependent buckling phenomena of polysilicon micro beams. Microelectron J 30:1169–1172CrossRef Teh KS, Lin L (1999) Time-dependent buckling phenomena of polysilicon micro beams. Microelectron J 30:1169–1172CrossRef
Zurück zum Zitat Tuck K, Jungen A, Geisberger A et al (2005) A study of creep in polysilicon MEMS devices. J Eng Mater Technol 127:90–96CrossRef Tuck K, Jungen A, Geisberger A et al (2005) A study of creep in polysilicon MEMS devices. J Eng Mater Technol 127:90–96CrossRef
Zurück zum Zitat Wang L, Zhang W, Liu YA et al (2017) Impact analysis of convected motion on the carrier frequency of a carrier-driven gyroscope signal. Microsyst Technol 23:5805–5813CrossRef Wang L, Zhang W, Liu YA et al (2017) Impact analysis of convected motion on the carrier frequency of a carrier-driven gyroscope signal. Microsyst Technol 23:5805–5813CrossRef
Metadaten
Titel
Viscoelastically coupled dynamics of FG Timoshenko microbeams
verfasst von
Mergen H. Ghayesh
Publikationsdatum
30.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 2/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-4002-3

Weitere Artikel der Ausgabe 2/2019

Microsystem Technologies 2/2019 Zur Ausgabe

Neuer Inhalt