Skip to main content

2016 | OriginalPaper | Buchkapitel

Visual Processing in Cortical Architecture from Neuroscience to Neuromorphic Computing

verfasst von : Tobias Brosch, Stephan Tschechne, Heiko Neumann

Erschienen in: Brain-Inspired Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Primate cortices are organized into different layers which constitute a compartmental structure on a functional level. We show how composite structural elements form building blocks to define canonical elements for columnar computation in cortex. As a further abstraction, we define a dynamical three-stage model of a cortical column for processing that allows to investigate the dynamic response properties of cortical algorithms, e.g., feedforward signal integration as feature detection filters, lateral feature grouping, and the integration of modulatory (feedback) signals. Using such multi-stage cortical model, we investigate the detection and integration of spatio-temporal motion measured by event-based (frame-less) cameras. We demonstrate how the canonical neural circuit can improve such representations using normalization and feedback and develop key computational elements to map such a model onto neuromorphic hardware (IBM’s TrueNorth chip). This makes a step towards implementing real-time and energy-efficient neuromorphic optical flow detectors based on realistic principles of computation in cortical columns.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barbas, H., Rempel-Clower, N.: Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7(7), 635–646 (1997)CrossRef Barbas, H., Rempel-Clower, N.: Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7(7), 635–646 (1997)CrossRef
2.
Zurück zum Zitat Born, R.T., Bradley, D.C.: Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005)CrossRef Born, R.T., Bradley, D.C.: Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005)CrossRef
3.
Zurück zum Zitat Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997) Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)
4.
Zurück zum Zitat Brosch, T., Neumann, H.: Computing with a canonical neural circuits model with pool normalization and modulating feedback. Neural Comput. 26(12), 2735–2789 (2014)MathSciNetCrossRef Brosch, T., Neumann, H.: Computing with a canonical neural circuits model with pool normalization and modulating feedback. Neural Comput. 26(12), 2735–2789 (2014)MathSciNetCrossRef
5.
Zurück zum Zitat Brosch, T., Neumann, H.: Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations. Neural Networks 54, 11–16 (2014)CrossRefMATH Brosch, T., Neumann, H.: Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations. Neural Networks 54, 11–16 (2014)CrossRefMATH
6.
Zurück zum Zitat Brosch, T., Neumann, H.: Event-based optical flow on neuromorphic hardware. In: CMVC (2015) Brosch, T., Neumann, H.: Event-based optical flow on neuromorphic hardware. In: CMVC (2015)
7.
Zurück zum Zitat Brosch, T., Tschechne, S., Neumann, H.: On event-based optical flow detection. Front. Neurosci. 9(137), 1–15 (2015) Brosch, T., Tschechne, S., Neumann, H.: On event-based optical flow detection. Front. Neurosci. 9(137), 1–15 (2015)
8.
Zurück zum Zitat Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012)CrossRef Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012)CrossRef
9.
Zurück zum Zitat Cassidy, A.S., Merolla, P., Arthur, J.V., Esser, S.K., Jackson, B., Alvarez-Icaza, R., Datta, P., Sawaday, J., Wong, T.M., Feldman, V., Amir, A., Rubin, D.B.D., Akopyan, F., McQuinn, E., Risk, W.P., Modha, D.S.: Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: IJCNN, pp. 1–10 (2013) Cassidy, A.S., Merolla, P., Arthur, J.V., Esser, S.K., Jackson, B., Alvarez-Icaza, R., Datta, P., Sawaday, J., Wong, T.M., Feldman, V., Amir, A., Rubin, D.B.D., Akopyan, F., McQuinn, E., Risk, W.P., Modha, D.S.: Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores. In: IJCNN, pp. 1–10 (2013)
10.
Zurück zum Zitat De Valois, R.L., Cottaris, N.P., Mahon, L.E., Elfar, S.D., Wilson, J.A.: Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Res. 40(27), 3685–3702 (2000)CrossRef De Valois, R.L., Cottaris, N.P., Mahon, L.E., Elfar, S.D., Wilson, J.A.: Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Res. 40(27), 3685–3702 (2000)CrossRef
11.
Zurück zum Zitat DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. TINS 18(10), 451–458 (1995) DeAngelis, G.C., Ohzawa, I., Freeman, R.D.: Receptive-field dynamics in the central visual pathways. TINS 18(10), 451–458 (1995)
12.
Zurück zum Zitat Fregnac, Y., Blatow, M., Changeux, J.P., de Felipe, J., Lansner, A., Maass, W., McCormick, D.A., Michel, C.M., Monyer, H., Szathmary, E., Yuste, R.: UPs and DOWNs in cortical computation. In: Grillner, S., Graybiel, A.M. (eds.) The Interface between Neurons and Global Brain Function, pp. 393–433. Dahlem Workshop Report 93, MIT Press (2006) Fregnac, Y., Blatow, M., Changeux, J.P., de Felipe, J., Lansner, A., Maass, W., McCormick, D.A., Michel, C.M., Monyer, H., Szathmary, E., Yuste, R.: UPs and DOWNs in cortical computation. In: Grillner, S., Graybiel, A.M. (eds.) The Interface between Neurons and Global Brain Function, pp. 393–433. Dahlem Workshop Report 93, MIT Press (2006)
13.
Zurück zum Zitat Frégnac, Y., Monier, C., Chavane, F., Baudot, P., Graham, L.: Shunting inhibition a silent step in visual cortical computation. J. Physiol. 97(4–6), 441–451 (2003) Frégnac, Y., Monier, C., Chavane, F., Baudot, P., Graham, L.: Shunting inhibition a silent step in visual cortical computation. J. Physiol. 97(4–6), 441–451 (2003)
14.
Zurück zum Zitat Glass, L., Perez, R.: Perception of random dot interference patterns. Nature 246, 360–362 (1973)CrossRef Glass, L., Perez, R.: Perception of random dot interference patterns. Nature 246, 360–362 (1973)CrossRef
15.
Zurück zum Zitat Grossberg, S.: How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision 12, 163–185 (1999)CrossRef Grossberg, S.: How does the cerebral cortex work? Learning, attention, and grouping by the laminar circuits of visual cortex. Spatial Vision 12, 163–185 (1999)CrossRef
16.
17.
Zurück zum Zitat Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)CrossRef Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)CrossRef
18.
Zurück zum Zitat Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999) Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999)
19.
20.
Zurück zum Zitat Krause, M.R., Pack, C.C.: Contextual modulation and stimulus selectivity in extrastriate cortex. Vision Res. 104, 36–46 (2014)CrossRef Krause, M.R., Pack, C.C.: Contextual modulation and stimulus selectivity in extrastriate cortex. Vision Res. 104, 36–46 (2014)CrossRef
21.
Zurück zum Zitat Larkum, M.: A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36(3), 141–151 (2013)CrossRef Larkum, M.: A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36(3), 141–151 (2013)CrossRef
22.
Zurück zum Zitat Larkum, M.E., Senn, W., Lüscher, H.R.: Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14(10), 1059–1070 (2004)CrossRef Larkum, M.E., Senn, W., Lüscher, H.R.: Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14(10), 1059–1070 (2004)CrossRef
23.
Zurück zum Zitat Layher, G., Brosch, T., Neumann, H.: Towards a Mesoscopic-level canonical circuit definition for visual cortical processing. In: CMVC (2015) Layher, G., Brosch, T., Neumann, H.: Towards a Mesoscopic-level canonical circuit definition for visual cortical processing. In: CMVC (2015)
24.
Zurück zum Zitat Lee, C.C., Sherman, S.M.: Modulator property of the intrinsic cortical projection from layer 6 to layer 4. Front. Syst. Neurosci. 3(3), 1–5 (2009) Lee, C.C., Sherman, S.M.: Modulator property of the intrinsic cortical projection from layer 6 to layer 4. Front. Syst. Neurosci. 3(3), 1–5 (2009)
25.
Zurück zum Zitat Li, W., Piëch, V., Gilbert, C.D.: Contour saliency in primary visual cortex. Neuron 50(6), 951–962 (2006)CrossRef Li, W., Piëch, V., Gilbert, C.D.: Contour saliency in primary visual cortex. Neuron 50(6), 951–962 (2006)CrossRef
26.
Zurück zum Zitat Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)CrossRef Merolla, P.A., Arthur, J.V., Alvarez-Icaza, R., Cassidy, A.S., Sawada, J., Akopyan, F., Jackson, B.L., Imam, N., Guo, C., Nakamura, Y., Brezzo, B., Vo, I., Esser, S.K., Appuswamy, R., Taba, B., Amir, A., Flickner, M.D., Risk, W.P., Manohar, R., Modha, D.S.: A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345(6197), 668–673 (2014)CrossRef
27.
Zurück zum Zitat Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)CrossRef Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120(4), 701–722 (1997)CrossRef
28.
Zurück zum Zitat Packer, A.M., Yuste, R.: Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci. 31(37), 13260–13271 (2011)CrossRef Packer, A.M., Yuste, R.: Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J. Neurosci. 31(37), 13260–13271 (2011)CrossRef
29.
30.
Zurück zum Zitat Phillips, W.A., Clark, A., Silverstein, S.M.: On the functions, mechanisms, and malfunctions of intracortial contextual modulation. Neurosci. Biobehav. Rev. 52, 1–20 (2015)CrossRef Phillips, W.A., Clark, A., Silverstein, S.M.: On the functions, mechanisms, and malfunctions of intracortial contextual modulation. Neurosci. Biobehav. Rev. 52, 1–20 (2015)CrossRef
31.
Zurück zum Zitat Raudies, F., Neumann, H.: A model of neural mechanisms in monocular transparent motion perception. J. Physiol.-Paris 104(1–2), 7183 (2010) Raudies, F., Neumann, H.: A model of neural mechanisms in monocular transparent motion perception. J. Physiol.-Paris 104(1–2), 7183 (2010)
32.
Zurück zum Zitat Reynolds, J.H., Heeger, D.J.: The normalization model of attention. Neuron 61, 168–185 (2009)CrossRef Reynolds, J.H., Heeger, D.J.: The normalization model of attention. Neuron 61, 168–185 (2009)CrossRef
33.
Zurück zum Zitat Roelfsema, P.R.: Cortical algorithms for perceptual grouping. Ann. Rev. Neurosci. 29, 203–227 (2006)CrossRef Roelfsema, P.R.: Cortical algorithms for perceptual grouping. Ann. Rev. Neurosci. 29, 203–227 (2006)CrossRef
34.
Zurück zum Zitat Thielscher, A., Neumann, H.: Neural mechanisms of cortico-cortical interaction in texture boundary detection: a modeling approach. Neuroscience 122, 921–939 (2003)CrossRef Thielscher, A., Neumann, H.: Neural mechanisms of cortico-cortical interaction in texture boundary detection: a modeling approach. Neuroscience 122, 921–939 (2003)CrossRef
35.
Zurück zum Zitat Tschechne, S., Brosch, T., Sailer, R., von Egloffstein, N., Abdul-Kreem, L.I., Neumann, H.: On event-based motion detection and integration. In: 8th International Conference on Bio-inspired Information and Communications Technologies, BICT, pp. 298–305 (2014) Tschechne, S., Brosch, T., Sailer, R., von Egloffstein, N., Abdul-Kreem, L.I., Neumann, H.: On event-based motion detection and integration. In: 8th International Conference on Bio-inspired Information and Communications Technologies, BICT, pp. 298–305 (2014)
36.
Zurück zum Zitat Tschechne, S., Sailer, R., Neumann, H.: Bio-Inspired optic flow from event-based neuromorphic sensor input. In: Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR 2014. LNCS (LNAI), vol. 8774, pp. 171–182. Springer International Publishing, Cham (2014). doi:10.1007/978-3-319-11656-3_16 Tschechne, S., Sailer, R., Neumann, H.: Bio-Inspired optic flow from event-based neuromorphic sensor input. In: Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR 2014. LNCS (LNAI), vol. 8774, pp. 171–182. Springer International Publishing, Cham (2014). doi:10.​1007/​978-3-319-11656-3_​16
37.
Zurück zum Zitat Ullman, S.: Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cereb. Cortex 5(1), 1–11 (1995)CrossRef Ullman, S.: Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. Cereb. Cortex 5(1), 1–11 (1995)CrossRef
38.
Zurück zum Zitat Wagatsuma, N., Potjans, T.C., Diesmann, M., Fukai, T.: Layer-dependent attentional processing by top-down signals in a visual cortical microcircuit model. Front. Comput. Neurosci. 5(31), 1–15 (2011) Wagatsuma, N., Potjans, T.C., Diesmann, M., Fukai, T.: Layer-dependent attentional processing by top-down signals in a visual cortical microcircuit model. Front. Comput. Neurosci. 5(31), 1–15 (2011)
Metadaten
Titel
Visual Processing in Cortical Architecture from Neuroscience to Neuromorphic Computing
verfasst von
Tobias Brosch
Stephan Tschechne
Heiko Neumann
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-50862-7_7

Neuer Inhalt