Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2020

22.01.2020 | ICFSMA 2019

Visualization of Magnetic Domains and Magnetization Vectors in Magnetic Shape Memory Alloys Under Magneto-Mechanical Loading

verfasst von: Glen J. D’Silva, Heidi P. Feigenbaum, Constantin Ciocanel

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

\(\hbox {Ni}_{2}\hbox {MnGa}\) magnetic shape memory alloys have a microstructure consisting of martensite variants, and magnetic domains exist in each martensite variant. In the absence of a magnetic field, the magnetic domains are equally distributed so that the net magnetization of the material is zero. Application of a magnetic field or mechanical stress can rearrange the martensite variants and magnetic domains. This study focuses on understanding the effects that magnetic field, compressive stress and magneto-mechanical loading have on the magnetic domains, by measuring and quantifying magnetic domain volume fraction and magnetization vector rotation using direct imaging. In particular, a magneto-optical indicator film in conjunction with polarization microscopy was used to visualize the evolution of the magnetic domains and magnetization vector rotation of a \(\hbox {Ni}_{2}\hbox {MnGa}\) sample for different load cases, namely varying magnetic field at constant strain, and varying compressive stress at a constant magnetic field. Our experiments revealed that the applied magnetic field causes change in domain volume fraction at different rates in each variant, and that domain wall motion is not always fully reversible. Magnetization vector rotation, however, was found to be reversible for all loading cases tested.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Guiel R, Feigenbaum H, Ciocanel C (2018) The effect of magnetic field orientation on the open-circuit voltage of Ni–Mn–Ga based power harvesters. Smart Mater Struct 27:95006CrossRef Guiel R, Feigenbaum H, Ciocanel C (2018) The effect of magnetic field orientation on the open-circuit voltage of Ni–Mn–Ga based power harvesters. Smart Mater Struct 27:95006CrossRef
2.
Zurück zum Zitat Suorsa I, Tellinen J, Ullakko K, Pagounis E (2004) Voltage generation induced by mechanical straining in magnetic shape memory materials. J Appl Phys 95:8054–8058CrossRef Suorsa I, Tellinen J, Ullakko K, Pagounis E (2004) Voltage generation induced by mechanical straining in magnetic shape memory materials. J Appl Phys 95:8054–8058CrossRef
3.
Zurück zum Zitat Straka L, Heczko O, Seiner H, Lanska N, Drahokoupil J, Soroka A, Fahler S, Hanninen H, Sozinov A (2011) Highly mobile twinned interface in 10 m modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice. Acta Mater 59:7450–7463CrossRef Straka L, Heczko O, Seiner H, Lanska N, Drahokoupil J, Soroka A, Fahler S, Hanninen H, Sozinov A (2011) Highly mobile twinned interface in 10 m modulated Ni–Mn–Ga martensite: analysis beyond the tetragonal approximation of lattice. Acta Mater 59:7450–7463CrossRef
4.
Zurück zum Zitat Lai Y, Scheerbaum N, Hinz D, Gutfleisch O, Schafer R, Schultz L, McCord J (2007) Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl Phys Lett 90:3 Lai Y, Scheerbaum N, Hinz D, Gutfleisch O, Schafer R, Schultz L, McCord J (2007) Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys. Appl Phys Lett 90:3
5.
Zurück zum Zitat Neudert A, Lai YW, Schafer R, Kustov M, Schultz L, McCord J (2012) Magnetic domains and twin boundary movement of nimnga magnetic shape memory crystals. Adv Eng Mater 14:601–613CrossRef Neudert A, Lai YW, Schafer R, Kustov M, Schultz L, McCord J (2012) Magnetic domains and twin boundary movement of nimnga magnetic shape memory crystals. Adv Eng Mater 14:601–613CrossRef
6.
Zurück zum Zitat Kopecky V, Jurek K, Kopecek J, Straka L, Seiner H, Heczko O (2015) Magnetic domains and twin microstructure of single crystal Ni–Mn–Ga exhibiting magnetic shape memory effect. IEEE Trans Magn 51:1–4 Kopecky V, Jurek K, Kopecek J, Straka L, Seiner H, Heczko O (2015) Magnetic domains and twin microstructure of single crystal Ni–Mn–Ga exhibiting magnetic shape memory effect. IEEE Trans Magn 51:1–4
7.
Zurück zum Zitat Kopecky V, Fekete L, Perevertov O, Heczko O (2016) Changes in magnetic domain structure during twin boundary motion in single crystal Ni–Mn–Ga exhibiting magnetic shape memory effect. AIP Adv 6:6CrossRef Kopecky V, Fekete L, Perevertov O, Heczko O (2016) Changes in magnetic domain structure during twin boundary motion in single crystal Ni–Mn–Ga exhibiting magnetic shape memory effect. AIP Adv 6:6CrossRef
8.
Zurück zum Zitat LaMaster DH, Feigenbaum HP, Nelson ID, Ciocanel C (2014) A full two-dimensional thermodynamic-based model for magnetic shape memory alloys. J Appl Mech Trans ASME 81:061003 /06CrossRef LaMaster DH, Feigenbaum HP, Nelson ID, Ciocanel C (2014) A full two-dimensional thermodynamic-based model for magnetic shape memory alloys. J Appl Mech Trans ASME 81:061003 /06CrossRef
9.
Zurück zum Zitat Eberle J, Feigenbaum H, Ciocanel C (2017) Magnetic field within a magnetic shape memory alloy and an equivalent uniform applied magnetic field for model input. In: Development and characterization of multifunctional materials; mechanics and behavior of active materials; bioinspired smart materials and systems; energy harvesting; emerging technologies, vol. 1, American Society of Mechanical Engineers Eberle J, Feigenbaum H, Ciocanel C (2017) Magnetic field within a magnetic shape memory alloy and an equivalent uniform applied magnetic field for model input. In: Development and characterization of multifunctional materials; mechanics and behavior of active materials; bioinspired smart materials and systems; energy harvesting; emerging technologies, vol. 1, American Society of Mechanical Engineers
10.
Zurück zum Zitat Haider T (2017) A review of magneto-optic effects and its application. Int J Electromagn Appl 7(1):17–24 Haider T (2017) A review of magneto-optic effects and its application. Int J Electromagn Appl 7(1):17–24
11.
Zurück zum Zitat Hubert A, Schafer R (1998) Magnetic domains: the analysis of magnetic microstructures. Springer-Verlag, Berlin Heidelberg Hubert A, Schafer R (1998) Magnetic domains: the analysis of magnetic microstructures. Springer-Verlag, Berlin Heidelberg
12.
Zurück zum Zitat Richert H, Schmidt H, Lindner S, Lindner M, Wenzel B, Holzhey R, Schafer R (2016) Dynamic magneto-optical imaging of domains in grain-oriented electrical steel. Steel Res Int 87:232–240CrossRef Richert H, Schmidt H, Lindner S, Lindner M, Wenzel B, Holzhey R, Schafer R (2016) Dynamic magneto-optical imaging of domains in grain-oriented electrical steel. Steel Res Int 87:232–240CrossRef
13.
Zurück zum Zitat Straka L, Hanninen H, Lanska N, Sozinov A (2011) Twin interaction and large magnetoelasticity in Ni–Mn–Ga single crystals. J Appl Phys 109:7CrossRef Straka L, Hanninen H, Lanska N, Sozinov A (2011) Twin interaction and large magnetoelasticity in Ni–Mn–Ga single crystals. J Appl Phys 109:7CrossRef
14.
Zurück zum Zitat Kopecky V, Heczko O (2017) Change of magnetic domain structure by mechanically induced twin boundary motion in Ni–Mn–Ga single crystal. J Phys 903:12013 Kopecky V, Heczko O (2017) Change of magnetic domain structure by mechanically induced twin boundary motion in Ni–Mn–Ga single crystal. J Phys 903:12013
15.
Zurück zum Zitat Koschny M, Lindner M (2012) Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials. Adv Mater Process 170:13–16 Koschny M, Lindner M (2012) Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials. Adv Mater Process 170:13–16
Metadaten
Titel
Visualization of Magnetic Domains and Magnetization Vectors in Magnetic Shape Memory Alloys Under Magneto-Mechanical Loading
verfasst von
Glen J. D’Silva
Heidi P. Feigenbaum
Constantin Ciocanel
Publikationsdatum
22.01.2020
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2020
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-020-00262-6

Weitere Artikel der Ausgabe 1/2020

Shape Memory and Superelasticity 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.