Skip to main content

2020 | OriginalPaper | Buchkapitel

4. Volterra Integro-Dynamic Equations

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Summary

This chapter is exclusively devoted to the study of Volterra integro-dynamic equations with or without delay. We will display some exotic Lyapunov functionals to obtain stability and instability of the zero solutions and boundedness of solutions. The delay is in the form of shift operators so that all type of general time scales can be considered and without the requirement that they be additive. We prove variant forms of Gronwall’s inequality, so we can determine function bounds for the solutions of the integro-dynamic equations. We will develop in detail the notion of principal matrix solution for Volterra integro-dynamic equations and then build on the same concept to fully develop the existence of resolvent kernel which will be used along with Lyapunov functionals to obtain necessary and sufficient conditions for uniform stability and uniform asymptotic stability of the zero solution. Then we advance to functional delay dynamic equations which we write as Volterra integro-dynamic equations and study their behaviors via Lyapunov functionals. Toward the end of the chapter we classify the positive and negative solutions of nonlinear systems of Volterra integro-dynamic equations by appealing to Schauder’s and Knaster fixed point theorems. As usual, we end the chapter with some interesting and rewarding open problems. Some results are new and the rest can be found in Adıvar (Electron J Qual Theory Differ Equ 2010(7):1–22, 2010; Glasg Math J 53(3), 463–480, 2011), Bohner (Far East J Appl Math 18(3):289–304, 2005), Burton (J Math Anal Appl 28:545–552, 1969; Nonlinear Anal 1(4):331–338, 1976/1977), Eloe et al. (Dynam Syst Appl 9(3):331–344, 2000), Kulik and Tisdell (Int J Differ Equ 3(1):103–133, 2008), Miller (J Differ Equ 10, 485–506, 1971), Raffoul (JIPAM J Inequal Pure Appl Math 10(3):70, 9, 2009), and Wang (J Math Anal Appl 186(3):8350–861, 1994; J Math Anal Appl 298(1):33–44, 2004).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat M. Adıvar, Function bounds for solutions of Volterra integro dynamic equations on the time scales. Electron. J. Qual. Theory Differ. Equ. 2010(7), 1–22 (2010)MathSciNetMATHCrossRef M. Adıvar, Function bounds for solutions of Volterra integro dynamic equations on the time scales. Electron. J. Qual. Theory Differ. Equ. 2010(7), 1–22 (2010)MathSciNetMATHCrossRef
5.
Zurück zum Zitat M. Adıvar, Principal matrix solutions and variation of parameters for Volterra integro-dynamic equations on time scales. Glasg. Math. J. 53(3), 463–480 (2011)MathSciNetMATHCrossRef M. Adıvar, Principal matrix solutions and variation of parameters for Volterra integro-dynamic equations on time scales. Glasg. Math. J. 53(3), 463–480 (2011)MathSciNetMATHCrossRef
10.
Zurück zum Zitat M. Adıvar, Y.N. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. 188(4), 543–559 (2009)MathSciNetMATH M. Adıvar, Y.N. Raffoul, Existence results for periodic solutions of integro-dynamic equations on time scales. Ann. Mat. Pura Appl. 188(4), 543–559 (2009)MathSciNetMATH
16.
Zurück zum Zitat M. Adıvar, Y.N. Raffoul, Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 21(3), 17–32 (2013) M. Adıvar, Y.N. Raffoul, Necessary and sufficient conditions for uniform stability of Volterra integro-dynamic equations using new resolvent equation. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 21(3), 17–32 (2013)
25.
Zurück zum Zitat E. Akın, O. Ozturk, On Volterra-integro dynamical systems on time scales. Commun. Appl. Anal. 23, 21–30 (2018) E. Akın, O. Ozturk, On Volterra-integro dynamical systems on time scales. Commun. Appl. Anal. 23, 21–30 (2018)
26.
Zurück zum Zitat E. Akın-Bohner, Y.N. Raffoul, Boundedness in functional dynamic equations on time scales. Adv. Differ. Equ. 2006, 79689, 18 (2006) E. Akın-Bohner, Y.N. Raffoul, Boundedness in functional dynamic equations on time scales. Adv. Differ. Equ. 2006, 79689, 18 (2006)
34.
Zurück zum Zitat L.C. Becker, Principal matrix solutions and variation of parameters for a Volterra integro-differential equation and its adjoint. Electron. J. Qual. Theory Differ. Equ. 2006(14), 22 (2006) L.C. Becker, Principal matrix solutions and variation of parameters for a Volterra integro-differential equation and its adjoint. Electron. J. Qual. Theory Differ. Equ. 2006(14), 22 (2006)
44.
Zurück zum Zitat M. Bohner, Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 18(3), 289–304 (2005)MathSciNetMATH M. Bohner, Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 18(3), 289–304 (2005)MathSciNetMATH
50.
Zurück zum Zitat M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser Boston, Inc., Boston, 2001)MATHCrossRef M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser Boston, Inc., Boston, 2001)MATHCrossRef
51.
Zurück zum Zitat M. Bohner, A. Peterson (eds.), Advances in Dynamic Equations on Time Scales (Birkhäuser Boston, Inc., Boston, 2003) M. Bohner, A. Peterson (eds.), Advances in Dynamic Equations on Time Scales (Birkhäuser Boston, Inc., Boston, 2003)
56.
Zurück zum Zitat T.A. Burton, Differential inequalities for Lyapunov functions. Nonlinear Anal. 1(4), 331–338 (1976/1977) T.A. Burton, Differential inequalities for Lyapunov functions. Nonlinear Anal. 1(4), 331–338 (1976/1977)
60.
Zurück zum Zitat T.A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations (Dover Publications, Inc., Mineola, 2005, Corrected version of the 1985 original) T.A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations (Dover Publications, Inc., Mineola, 2005, Corrected version of the 1985 original)
76.
Zurück zum Zitat S. Elaydi, Stability of Volterra difference equations of convolution type, in Dynamical Systems (Tianjin, 1990/1991). Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 4 (World Scientific Publishing, River Edge, 1993), pp. 66–72 S. Elaydi, Stability of Volterra difference equations of convolution type, in Dynamical Systems (Tianjin, 1990/1991). Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 4 (World Scientific Publishing, River Edge, 1993), pp. 66–72
77.
78.
Zurück zum Zitat S. Elaydi, E. Messina, A. Vecchio, On the asymptotic stability of linear Volterra difference equations of convolution type. J. Differ. Equ. Appl. 13(12), 1079–1084 (2007)MathSciNetMATHCrossRef S. Elaydi, E. Messina, A. Vecchio, On the asymptotic stability of linear Volterra difference equations of convolution type. J. Differ. Equ. Appl. 13(12), 1079–1084 (2007)MathSciNetMATHCrossRef
79.
Zurück zum Zitat P. Eloe, M. Islam, B. Zhang, Uniform asymptotic stability in linear Volterra integrodifferential equations with application to delay systems. Dynam. Syst. Appl. 9(3), 331–344 (2000)MathSciNetMATH P. Eloe, M. Islam, B. Zhang, Uniform asymptotic stability in linear Volterra integrodifferential equations with application to delay systems. Dynam. Syst. Appl. 9(3), 331–344 (2000)MathSciNetMATH
80.
Zurück zum Zitat P.W. Eloe, M.N. Islam, Y.N. Raffoul, Uniform asymptotic stability in nonlinear Volterra discrete systems. Comput. Math. Appl. 45(6–9), 1033–1039 (2003). Advances in difference equations, IV P.W. Eloe, M.N. Islam, Y.N. Raffoul, Uniform asymptotic stability in nonlinear Volterra discrete systems. Comput. Math. Appl. 45(6–9), 1033–1039 (2003). Advances in difference equations, IV
81.
Zurück zum Zitat L. Erbe, A. Peterson, C.C. Tisdell, Basic existence, uniqueness and approximation results for positive solutions to nonlinear dynamic equations on time scales. Nonlinear Anal. 69(7), 2303–2317 (2008)MathSciNetMATHCrossRef L. Erbe, A. Peterson, C.C. Tisdell, Basic existence, uniqueness and approximation results for positive solutions to nonlinear dynamic equations on time scales. Nonlinear Anal. 69(7), 2303–2317 (2008)MathSciNetMATHCrossRef
84.
Zurück zum Zitat S.I. Grossman, R.K. Miller, Perturbation theory for Volterra integrodifferential systems. J. Differ. Equ. 8, 457–474 (1970)MathSciNetMATHCrossRef S.I. Grossman, R.K. Miller, Perturbation theory for Volterra integrodifferential systems. J. Differ. Equ. 8, 457–474 (1970)MathSciNetMATHCrossRef
106.
Zurück zum Zitat T.M. Khandaker, Y.N. Raffoul, Stability properties of linear Volterra discrete systems with nonlinear perturbation. J. Differ. Equ. Appl. 8(10), 857–874 (2002). In honour of Professor Allan Peterson on the occasion of his 60th birthdayMathSciNetMATHCrossRef T.M. Khandaker, Y.N. Raffoul, Stability properties of linear Volterra discrete systems with nonlinear perturbation. J. Differ. Equ. Appl. 8(10), 857–874 (2002). In honour of Professor Allan Peterson on the occasion of his 60th birthdayMathSciNetMATHCrossRef
111.
Zurück zum Zitat T. Kulik, C.C. Tisdell, Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Differ. Equ. 3(1), 103–133 (2008)MathSciNet T. Kulik, C.C. Tisdell, Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Differ. Equ. 3(1), 103–133 (2008)MathSciNet
112.
Zurück zum Zitat W.-T. Li, X.-L. Fan, Monotone solutions of second-order nonlinear differential equations. Appl. Math. Lett. 13(4), 65–70 (2000)MathSciNetMATHCrossRef W.-T. Li, X.-L. Fan, Monotone solutions of second-order nonlinear differential equations. Appl. Math. Lett. 13(4), 65–70 (2000)MathSciNetMATHCrossRef
114.
Zurück zum Zitat W.-T. Li, Y.N. Raffoul, Classification and existence of positive solutions of systems of Volterra nonlinear difference equations. Appl. Math. Comput. 155(2), 469–478 (2004)MathSciNetMATH W.-T. Li, Y.N. Raffoul, Classification and existence of positive solutions of systems of Volterra nonlinear difference equations. Appl. Math. Comput. 155(2), 469–478 (2004)MathSciNetMATH
123.
Zurück zum Zitat R.K. Miller, Asymptotic stability properties of linear Volterra integrodifferential equations. J. Differ. Equ. 10, 485–506 (1971)MathSciNetMATHCrossRef R.K. Miller, Asymptotic stability properties of linear Volterra integrodifferential equations. J. Differ. Equ. 10, 485–506 (1971)MathSciNetMATHCrossRef
129.
Zurück zum Zitat D.B. Pachpatte, Explicit estimates on integral inequalities with time scale. JIPAM J. Inequal. Pure Appl. Math. 7(4), 143, 8 (2006) D.B. Pachpatte, Explicit estimates on integral inequalities with time scale. JIPAM J. Inequal. Pure Appl. Math. 7(4), 143, 8 (2006)
141.
Zurück zum Zitat Y. N. Raffoul, Inequalities that lead to exponential stability and instability in delay difference equations. JIPAM J. Inequal. Pure Appl. Math. 10(3), 70, 9 (2009) Y. N. Raffoul, Inequalities that lead to exponential stability and instability in delay difference equations. JIPAM J. Inequal. Pure Appl. Math. 10(3), 70, 9 (2009)
142.
Zurück zum Zitat Y.N. Raffoul, Classification of positive solutions of nonlinear systems of Volterra integral equations. Ann. Funct. Anal. 2(2), 34–41 (2011)MathSciNetMATHCrossRef Y.N. Raffoul, Classification of positive solutions of nonlinear systems of Volterra integral equations. Ann. Funct. Anal. 2(2), 34–41 (2011)MathSciNetMATHCrossRef
143.
Zurück zum Zitat Y.N. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay. Rocky Mountain J. Math. 42(6), 1983–1993 (2012)MathSciNetMATHCrossRef Y.N. Raffoul, Existence of positive periodic solutions in neutral nonlinear equations with functional delay. Rocky Mountain J. Math. 42(6), 1983–1993 (2012)MathSciNetMATHCrossRef
156.
Zurück zum Zitat C.C. Tisdell, A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68(11), 3504–3524 (2008)MathSciNetMATHCrossRef C.C. Tisdell, A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68(11), 3504–3524 (2008)MathSciNetMATHCrossRef
162.
Zurück zum Zitat T.X. Wang, Stability in abstract functional-differential equations. II. Applications. J. Math. Anal. Appl. 186(3), 835–861 (1994)MathSciNetMATHCrossRef T.X. Wang, Stability in abstract functional-differential equations. II. Applications. J. Math. Anal. Appl. 186(3), 835–861 (1994)MathSciNetMATHCrossRef
163.
Zurück zum Zitat T. Wang, Inequalities and stability for a linear scalar functional differential equation. J. Math. Anal. Appl. 298(1), 33–44 (2004)MathSciNetMATHCrossRef T. Wang, Inequalities and stability for a linear scalar functional differential equation. J. Math. Anal. Appl. 298(1), 33–44 (2004)MathSciNetMATHCrossRef
164.
Zurück zum Zitat F.-H. Wong, C.-C. Yeh, C.-H. Hong, Gronwall inequalities on time scales. Math. Inequal. Appl. 9(1), 75–86 (2006)MathSciNetMATH F.-H. Wong, C.-C. Yeh, C.-H. Hong, Gronwall inequalities on time scales. Math. Inequal. Appl. 9(1), 75–86 (2006)MathSciNetMATH
169.
Zurück zum Zitat J. Zhu, X. Liu, The existence of positive solution of systems of Volterra nonlinear difference equations. Nonlinear Oscill. 9(1), 37–47 (2006).MathSciNetCrossRef J. Zhu, X. Liu, The existence of positive solution of systems of Volterra nonlinear difference equations. Nonlinear Oscill. 9(1), 37–47 (2006).MathSciNetCrossRef
Metadaten
Titel
Volterra Integro-Dynamic Equations
verfasst von
Murat Adıvar
Youssef N. Raffoul
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-42117-5_4