Skip to main content

2021 | OriginalPaper | Buchkapitel

Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications

verfasst von : Abdelaal S. A. Ahmed, Ibrahim Saana Amiinu, Xiujian Zhao, Mohamed Abdelmottaleb

Erschienen in: Waste Recycling Technologies for Nanomaterials Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Energy is essential and affects all aspects of our society, including the economy and modern living. However, the unparalleled rise in the global population, technological advancements, and changes in the scope of energy resources are all affecting the present energy landscape. With the increasing demands for energy and over-consumption of fossil energy, CO2 emission is anticipated to rise over the next decades with devastating consequences on the environment and humans’ lives. To avoid future eventualities, clean energy technologies have evolved with the expectation to diversify the global energy resources. Alternative energies are likely to show a crucial role in meeting not just the future energy needs but to remedy the escalating negative impact of fossil energy. Various clean energy systems, including fuel cells, electrolytic cells, rechargeable batteries, solar cells, etc., have emerged as viable renewable energy systems with even a wider range of applications and less impact on the environment. The efficiency of these energy systems is critical but is dependent on several technical factors, including electrochemical hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). An efficient electrocatalyst is required to drive the kinetics of these electrochemical processes effectively. However, developing practically efficient electrocatalyst is a significant challenge in terms of striking a balance between cost, performance, and sustainability of the active materials. Irrespective of any challenges, developing cost-effective and efficient electrode materials is vital for large-scale implementations of these energy systems. This chapter discusses the alternatives, recent progress, and future trends of using various waste materials for the development of advanced electrodes for various electrochemical systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustai Energy Rev 68:234–246CrossRef Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustai Energy Rev 68:234–246CrossRef
4.
Zurück zum Zitat Smalley RE (2003) Our energy challenge. Public lecture presented at low library. Columbia University 23 Smalley RE (2003) Our energy challenge. Public lecture presented at low library. Columbia University 23
5.
Zurück zum Zitat REN21, Renewables 2018 Global Status Report. REN21 Secretariat, Paris REN21, Renewables 2018 Global Status Report. REN21 Secretariat, Paris
7.
Zurück zum Zitat Downes CA, Marinescu SC (2017) Electrocatalytic metal-organic frameworks for energy applications. Chemsuschem 10(22):4374–4392CrossRef Downes CA, Marinescu SC (2017) Electrocatalytic metal-organic frameworks for energy applications. Chemsuschem 10(22):4374–4392CrossRef
8.
Zurück zum Zitat Dutta T, Kim K-H, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun S-T (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704CrossRef Dutta T, Kim K-H, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun S-T (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704CrossRef
9.
Zurück zum Zitat Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637CrossRef Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637CrossRef
10.
Zurück zum Zitat Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1 Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1
11.
Zurück zum Zitat Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. Jurnal Teknologi 79(7):1–10 Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. Jurnal Teknologi 79(7):1–10
12.
Zurück zum Zitat Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRef Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253CrossRef
13.
Zurück zum Zitat Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044 Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044
14.
Zurück zum Zitat Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9CrossRef
15.
Zurück zum Zitat Ali GAM, Yusoff MM, Feng CK (2015) Electrochemical properties of electrodeposited MnO2 nanoparticles. Adv Mater Res 1113:550–553CrossRef Ali GAM, Yusoff MM, Feng CK (2015) Electrochemical properties of electrodeposited MnO2 nanoparticles. Adv Mater Res 1113:550–553CrossRef
16.
Zurück zum Zitat Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313CrossRef Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313CrossRef
17.
Zurück zum Zitat Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807 Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807
18.
Zurück zum Zitat Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conv Bioref Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conv Bioref
19.
Zurück zum Zitat Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739CrossRef Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739CrossRef
20.
Zurück zum Zitat Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692CrossRef
21.
Zurück zum Zitat Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan University Technol-Mater Sci Ed 32(2):305–320 Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan University Technol-Mater Sci Ed 32(2):305–320
22.
Zurück zum Zitat Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRef Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRef
23.
Zurück zum Zitat Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214CrossRef Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214CrossRef
24.
Zurück zum Zitat Kirubakaran AJ, Shailendra Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13(9):2430–2440CrossRef Kirubakaran AJ, Shailendra Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13(9):2430–2440CrossRef
25.
Zurück zum Zitat Brian CH, Steele AH (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352CrossRef Brian CH, Steele AH (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352CrossRef
26.
Zurück zum Zitat Yang M-Q, Wang J, Wu H, Ho GW (2018) Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1703323 Yang M-Q, Wang J, Wu H, Ho GW (2018) Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1703323
27.
Zurück zum Zitat Trasatti S (1999) Water electrolysis: who first? J Electroanal Chem 476:90–91CrossRef Trasatti S (1999) Water electrolysis: who first? J Electroanal Chem 476:90–91CrossRef
28.
Zurück zum Zitat Jiao L, Zhou YX, Jiang HL (2016) Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Rev 7(3):1690–1695 Jiao L, Zhou YX, Jiang HL (2016) Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Rev 7(3):1690–1695
29.
Zurück zum Zitat Ewan B, Allen R (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrogen Energy 30(8):809–819CrossRef Ewan B, Allen R (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrogen Energy 30(8):809–819CrossRef
30.
Zurück zum Zitat Cheng Y, Jiang SP (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci Mater Int 25(6):545–553CrossRef Cheng Y, Jiang SP (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci Mater Int 25(6):545–553CrossRef
31.
Zurück zum Zitat Ganguly P, Harb M, Cao Z, Cavallo L, Breen A, Dervin S, Dionysiou DD, Pillai SC (2019) 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 4:1687–1709CrossRef Ganguly P, Harb M, Cao Z, Cavallo L, Breen A, Dervin S, Dionysiou DD, Pillai SC (2019) 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 4:1687–1709CrossRef
32.
Zurück zum Zitat Han L, Dong S, Wang E (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28(42):9266–9291CrossRef Han L, Dong S, Wang E (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28(42):9266–9291CrossRef
33.
Zurück zum Zitat Anantharaj SE, Rao S, Sakthikumar K, Karthick K, Mishra S, Kundu Subrata (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catalysis 6(12):8069–8097CrossRef Anantharaj SE, Rao S, Sakthikumar K, Karthick K, Mishra S, Kundu Subrata (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catalysis 6(12):8069–8097CrossRef
34.
Zurück zum Zitat Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang L, Zhang J (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1(4):483–530CrossRef Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang L, Zhang J (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1(4):483–530CrossRef
35.
Zurück zum Zitat Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541CrossRef Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541CrossRef
36.
Zurück zum Zitat Lee J-S, Tai Kim S, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1(1):34–50CrossRef Lee J-S, Tai Kim S, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1(1):34–50CrossRef
37.
Zurück zum Zitat Drouet S, Creus J, Collière V, Amiens C, García-Antón J, Sala X, Philippot K (2017) A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chem Commun 53(85):11713–11716CrossRef Drouet S, Creus J, Collière V, Amiens C, García-Antón J, Sala X, Philippot K (2017) A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chem Commun 53(85):11713–11716CrossRef
38.
Zurück zum Zitat Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11(10):4168–4175CrossRef Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11(10):4168–4175CrossRef
39.
Zurück zum Zitat Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26(7):2344–2353CrossRef Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26(7):2344–2353CrossRef
40.
Zurück zum Zitat Xue N, Diao P (2017) Composite of few-layered MoS2 grown on carbon black: tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction. J Phys Chem C 121(27):14413–14425CrossRef Xue N, Diao P (2017) Composite of few-layered MoS2 grown on carbon black: tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction. J Phys Chem C 121(27):14413–14425CrossRef
41.
Zurück zum Zitat Hemamala I, Karunadasa EM, Sun Yujie, Majda Marcin, Long Jeffrey R, Chang Christopher J (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702CrossRef Hemamala I, Karunadasa EM, Sun Yujie, Majda Marcin, Long Jeffrey R, Chang Christopher J (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702CrossRef
42.
Zurück zum Zitat Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis 4(11):3957–3971CrossRef Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis 4(11):3957–3971CrossRef
43.
Zurück zum Zitat Wu Y, Liu X, Han D, Song X, Shi L, Song Y, Niu S, Xie Y, Cai J, Wu S, Kang J, Zhou J, Chen Z, Zheng X, Xiao X, Wang G (2018) Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat Commun 9(1):1425CrossRef Wu Y, Liu X, Han D, Song X, Shi L, Song Y, Niu S, Xie Y, Cai J, Wu S, Kang J, Zhou J, Chen Z, Zheng X, Xiao X, Wang G (2018) Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat Commun 9(1):1425CrossRef
44.
Zurück zum Zitat Zhu D, Liu J, Wang L, Du Y, Zheng Y, Davey K, Qiao S-Z (2019) A 2D metal–organic framework/Ni(OH)2 heterostructure for an enhanced oxygen evolution reaction. Nanoscale 11(8):3599–3605CrossRef Zhu D, Liu J, Wang L, Du Y, Zheng Y, Davey K, Qiao S-Z (2019) A 2D metal–organic framework/Ni(OH)2 heterostructure for an enhanced oxygen evolution reaction. Nanoscale 11(8):3599–3605CrossRef
45.
Zurück zum Zitat Abdalla S, Al-Marzouki F, Obaid A (2017) High-efficient and low-cost catalyst for hydrogen evolution reaction: nickel phosphide nano-spheres. J Renew Sustain Energy 9(2):023104CrossRef Abdalla S, Al-Marzouki F, Obaid A (2017) High-efficient and low-cost catalyst for hydrogen evolution reaction: nickel phosphide nano-spheres. J Renew Sustain Energy 9(2):023104CrossRef
46.
Zurück zum Zitat Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29(9):1605502CrossRef Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29(9):1605502CrossRef
47.
Zurück zum Zitat Cai Z, Wu A, Yan H, Xiao Y, Chen C, Tian C, Wang L, Wang R, Fu H (2018) Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale 10(16):7619–7629CrossRef Cai Z, Wu A, Yan H, Xiao Y, Chen C, Tian C, Wang L, Wang R, Fu H (2018) Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale 10(16):7619–7629CrossRef
48.
Zurück zum Zitat Du C, Yang L, Yang F, Cheng G, Luo W (2017) Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis 7(6):4131–4137CrossRef Du C, Yang L, Yang F, Cheng G, Luo W (2017) Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis 7(6):4131–4137CrossRef
49.
Zurück zum Zitat Che Q, Bai N, Li Q, Chen X, Tan Y, Xu X (2018) One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction. Nanoscale 10(32):15238–15248CrossRef Che Q, Bai N, Li Q, Chen X, Tan Y, Xu X (2018) One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction. Nanoscale 10(32):15238–15248CrossRef
50.
Zurück zum Zitat J. O. Bockris AKNRaMG-A (2000) Modern electrochemistry 2A. Fundamentals of electrodics. Kluwer Academic, New York J. O. Bockris AKNRaMG-A (2000) Modern electrochemistry 2A. Fundamentals of electrodics. Kluwer Academic, New York
51.
Zurück zum Zitat Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365 CrossRef Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365 CrossRef
52.
Zurück zum Zitat Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Defining the transfer coefficient in electrochemistry: an assessment (IUPAC technical report). Pure Appl Chem 86(2):245–258CrossRef Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Defining the transfer coefficient in electrochemistry: an assessment (IUPAC technical report). Pure Appl Chem 86(2):245–258CrossRef
53.
Zurück zum Zitat Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40(34):11094–11111CrossRef Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40(34):11094–11111CrossRef
54.
Zurück zum Zitat Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed 54(1):52–65CrossRef Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed 54(1):52–65CrossRef
55.
Zurück zum Zitat Zheng Y, Jiao Y, Vasileff A, Qiao S-Z (2018) The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed 57(26):7568–7579CrossRef Zheng Y, Jiao Y, Vasileff A, Qiao S-Z (2018) The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed 57(26):7568–7579CrossRef
56.
Zurück zum Zitat Zhang Y-Y, Zhang X, Wu Z-Y, Zhang B-B, Zhang Y, Jiang W-J, Yang Y-G, Kong Q-H, Hu J-S (2019) Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. J Mater Chem A 7(10):5195–5200CrossRef Zhang Y-Y, Zhang X, Wu Z-Y, Zhang B-B, Zhang Y, Jiang W-J, Yang Y-G, Kong Q-H, Hu J-S (2019) Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. J Mater Chem A 7(10):5195–5200CrossRef
57.
Zurück zum Zitat Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8(10):3022–3029CrossRef Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8(10):3022–3029CrossRef
58.
Zurück zum Zitat Li T, Jin H, Liang Z, Huang L, Lu Y, Yu H, Hu Z, Wu J, Xia BY, Feng G, Zhou J (2018) Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 10(15):6844–6849CrossRef Li T, Jin H, Liang Z, Huang L, Lu Y, Yu H, Hu Z, Wu J, Xia BY, Feng G, Zhou J (2018) Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 10(15):6844–6849CrossRef
59.
Zurück zum Zitat Mir RA, Pandey OP (2020) An ecofriendly route to synthesize C–Mo2C and C/N–Mo2C utilizing waste polyethene for efficient hydrogen evolution reaction (HER) activity and high performance capacitors. Sustain Energy Fuels 4:655–669 Mir RA, Pandey OP (2020) An ecofriendly route to synthesize C–Mo2C and C/N–Mo2C utilizing waste polyethene for efficient hydrogen evolution reaction (HER) activity and high performance capacitors. Sustain Energy Fuels 4:655–669
60.
Zurück zum Zitat Zhang Z, Yang S, Li H, Zan Y, Li X, Zhu Y, Dou M, Wang F (2019) Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts. Adv Mater 31(13):e1805718CrossRef Zhang Z, Yang S, Li H, Zan Y, Li X, Zhu Y, Dou M, Wang F (2019) Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts. Adv Mater 31(13):e1805718CrossRef
61.
Zurück zum Zitat Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50(10):2375–2378CrossRef Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50(10):2375–2378CrossRef
62.
Zurück zum Zitat Christopher O, Tuck EP, Horváth István T, Sheldon Roger A, Poliakoff Martyn (2012) Valorization of biomass: deriving more value from waste. Science 337(10):695–699 Christopher O, Tuck EP, Horváth István T, Sheldon Roger A, Poliakoff Martyn (2012) Valorization of biomass: deriving more value from waste. Science 337(10):695–699
63.
Zurück zum Zitat Liu X, Zhang M, Yu D, Li T, Wan M, Zhu H, Du M, Yao J (2016) Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochim Acta 215:223–230CrossRef Liu X, Zhang M, Yu D, Li T, Wan M, Zhu H, Du M, Yao J (2016) Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochim Acta 215:223–230CrossRef
64.
Zurück zum Zitat Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Du A, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:3783CrossRef Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Du A, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:3783CrossRef
65.
Zurück zum Zitat Yao Zheng YJ, Li LH, X T, C Ying, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296CrossRef Yao Zheng YJ, Li LH, X T, C Ying, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296CrossRef
66.
Zurück zum Zitat Dai L, Xue Y, Qu L, Choi HJ, Baek JB (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892CrossRef Dai L, Xue Y, Qu L, Choi HJ, Baek JB (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892CrossRef
67.
Zurück zum Zitat Prabu N, Saravanan RSA, Kesavan T, Maduraiveeran G, Sasidharan M (2019) An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon 152:188–197CrossRef Prabu N, Saravanan RSA, Kesavan T, Maduraiveeran G, Sasidharan M (2019) An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon 152:188–197CrossRef
68.
Zurück zum Zitat Yan Q, Yang X, Wei T, Zhou C, Wu W, Zeng L, Zhu R, Cheng K, Ye KK, Zhu K, Yan J, Cao D, Wang G (2020) Porous beta-Mo2C nanoparticle clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J Colloid Interface Sci 563:104–111CrossRef Yan Q, Yang X, Wei T, Zhou C, Wu W, Zeng L, Zhu R, Cheng K, Ye KK, Zhu K, Yan J, Cao D, Wang G (2020) Porous beta-Mo2C nanoparticle clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J Colloid Interface Sci 563:104–111CrossRef
69.
Zurück zum Zitat Kumar A, Chaudhary DK, Parvin S, Bhattacharyya S (2018) High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J Mater Chem A 6(39):18948–18959CrossRef Kumar A, Chaudhary DK, Parvin S, Bhattacharyya S (2018) High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J Mater Chem A 6(39):18948–18959CrossRef
70.
Zurück zum Zitat Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF (2016) Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy 1:16053CrossRef Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF (2016) Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy 1:16053CrossRef
71.
Zurück zum Zitat Shi Q, Fu S, Zhu C, Song J, Du D, Lin Y (2019) Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Mater Horizons 6:684–702 Shi Q, Fu S, Zhu C, Song J, Du D, Lin Y (2019) Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Mater Horizons 6:684–702
72.
Zurück zum Zitat Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121CrossRef Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121CrossRef
73.
Zurück zum Zitat Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1(12):2075–2081CrossRef Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1(12):2075–2081CrossRef
74.
Zurück zum Zitat Kotz R, Lewerenz HJ, Stucki S (1983) XPS studies of oxygen evolution on Ru and RuO2 anodes. J Electrochem Soc 130:825–829CrossRef Kotz R, Lewerenz HJ, Stucki S (1983) XPS studies of oxygen evolution on Ru and RuO2 anodes. J Electrochem Soc 130:825–829CrossRef
75.
Zurück zum Zitat Lyu F, Wang Q, Choi SM, Yin Y (2019) Noble-metal-free electrocatalysts for oxygen evolution. Small 15(1):1804201CrossRef Lyu F, Wang Q, Choi SM, Yin Y (2019) Noble-metal-free electrocatalysts for oxygen evolution. Small 15(1):1804201CrossRef
76.
Zurück zum Zitat Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780CrossRef Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780CrossRef
77.
Zurück zum Zitat Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catalysis 7(11):7855–7865CrossRef Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catalysis 7(11):7855–7865CrossRef
78.
Zurück zum Zitat Cheng Y, Liao F, Shen W, Liu L, Jiang B, Li Y, Shao M (2017) Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries. Nanoscale 9(47):18977–18982CrossRef Cheng Y, Liao F, Shen W, Liu L, Jiang B, Li Y, Shao M (2017) Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries. Nanoscale 9(47):18977–18982CrossRef
79.
Zurück zum Zitat Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140(25):7748–7759CrossRef Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140(25):7748–7759CrossRef
80.
Zurück zum Zitat Xue Y, Ren Z, Xie Y, Du S, Wu J, Meng H, Fu H (2017) CoSex nanocrystalline-dotted CoCo layered double hydroxide nanosheets: a synergetic engineering process for enhanced electrocatalytic water oxidation. Nanoscale 9(42):16256–16263CrossRef Xue Y, Ren Z, Xie Y, Du S, Wu J, Meng H, Fu H (2017) CoSex nanocrystalline-dotted CoCo layered double hydroxide nanosheets: a synergetic engineering process for enhanced electrocatalytic water oxidation. Nanoscale 9(42):16256–16263CrossRef
81.
Zurück zum Zitat Zhang R, Tang C, Kong R, Du G, Asiri AM, Chen L, Sun X (2017) Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale 9(14):4793–4800CrossRef Zhang R, Tang C, Kong R, Du G, Asiri AM, Chen L, Sun X (2017) Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale 9(14):4793–4800CrossRef
82.
Zurück zum Zitat Devi MM, Ojha KN, Ganguli AK, Jha M (2018) Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. Int J Environ Sci Technol 16(7):3669–3678CrossRef Devi MM, Ojha KN, Ganguli AK, Jha M (2018) Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. Int J Environ Sci Technol 16(7):3669–3678CrossRef
83.
Zurück zum Zitat Jothi VR, Bose R, Rajan H, Jung C, Yi SC (2018) Harvesting electronic waste for the development of highly efficient eco-design electrodes for electrocatalytic water splitting. Adv Energy Mater 8(34):1802615CrossRef Jothi VR, Bose R, Rajan H, Jung C, Yi SC (2018) Harvesting electronic waste for the development of highly efficient eco-design electrodes for electrocatalytic water splitting. Adv Energy Mater 8(34):1802615CrossRef
84.
Zurück zum Zitat Babar P, Lokhande A, Karade V, Pawar B, Gang MG, Pawar S, Kim JH (2019) Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: an effective method of electronic waste management by utilizing waste Cu cable wires. J Colloid Interface Sci 537:43–49CrossRef Babar P, Lokhande A, Karade V, Pawar B, Gang MG, Pawar S, Kim JH (2019) Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: an effective method of electronic waste management by utilizing waste Cu cable wires. J Colloid Interface Sci 537:43–49CrossRef
85.
Zurück zum Zitat Natarajan S, Anantharaj S, Tayade RJ, Bajaj HC, Kundu S (2017) Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans 46(41):14382–14392CrossRef Natarajan S, Anantharaj S, Tayade RJ, Bajaj HC, Kundu S (2017) Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans 46(41):14382–14392CrossRef
86.
Zurück zum Zitat Aboelazm EA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74 Aboelazm EA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74
87.
Zurück zum Zitat Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206CrossRef
88.
Zurück zum Zitat Li J, He X, Zeng X (2017) Designing and examining e-waste recycling process: methodology and case studies. Environ Technol 38(6):652–660CrossRef Li J, He X, Zeng X (2017) Designing and examining e-waste recycling process: methodology and case studies. Environ Technol 38(6):652–660CrossRef
89.
Zurück zum Zitat Chen N, Qi J, Du X, Wang Y, Zhang W, Wang Y, Lu Y, Wang S (2016) Recycled LiCoO2 in spent lithium-ion battery as an oxygen evolution electrocatalyst. RSC Adv 6(105):103541–103545CrossRef Chen N, Qi J, Du X, Wang Y, Zhang W, Wang Y, Lu Y, Wang S (2016) Recycled LiCoO2 in spent lithium-ion battery as an oxygen evolution electrocatalyst. RSC Adv 6(105):103541–103545CrossRef
90.
Zurück zum Zitat Yang Y, Yang H, Cao H, Wang Z, Liu C, Sun Y, Zhao H, Zhang Y, Sun Z (2019) Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent Li Ni0.5 Mn0.3Co0.2O2 batteries. J Cleaner Prod 236:117576 Yang Y, Yang H, Cao H, Wang Z, Liu C, Sun Y, Zhao H, Zhang Y, Sun Z (2019) Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent Li Ni0.5 Mn0.3Co0.2O2 batteries. J Cleaner Prod 236:117576
91.
Zurück zum Zitat Pegoretti VCB, Dixini PVM, Magnago L, Rocha AKS, Lelis MFF, Freitas MBJG (2019) High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Mater Res Bull 110:97–101CrossRef Pegoretti VCB, Dixini PVM, Magnago L, Rocha AKS, Lelis MFF, Freitas MBJG (2019) High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Mater Res Bull 110:97–101CrossRef
92.
Zurück zum Zitat Wanwan Mei XY, Li L, Tong Y, Lei Y, Li P, Zheng Z (2020) Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanode for water oxidation. ACS Sustain Chem Eng 8(9):3606–3616CrossRef Wanwan Mei XY, Li L, Tong Y, Lei Y, Li P, Zheng Z (2020) Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanode for water oxidation. ACS Sustain Chem Eng 8(9):3606–3616CrossRef
93.
Zurück zum Zitat Amiinu IS, Zhang J, Kou Z, Liu X, Asare OK, Zhou H, Cheng K, Zhang H, Mai L, Pan M, Mu S (2016) Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Appl Mater Interfaces 8(43):29408–29418CrossRef Amiinu IS, Zhang J, Kou Z, Liu X, Asare OK, Zhou H, Cheng K, Zhang H, Mai L, Pan M, Mu S (2016) Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Appl Mater Interfaces 8(43):29408–29418CrossRef
94.
Zurück zum Zitat Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons 2(6):342–348CrossRef Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons 2(6):342–348CrossRef
95.
Zurück zum Zitat Ji L, Wang J, Teng X, Meyer TJ, Chen Z (2019) CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catalysis 10(1):412–419CrossRef Ji L, Wang J, Teng X, Meyer TJ, Chen Z (2019) CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catalysis 10(1):412–419CrossRef
96.
Zurück zum Zitat Deng S, Zhang K, Xie D, Zhang Y, Zhang Y, Wang Y, Wu J, Wang X, Fan HJ, Xia X, Tu J (2019) High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett 11:12 Deng S, Zhang K, Xie D, Zhang Y, Zhang Y, Wang Y, Wu J, Wang X, Fan HJ, Xia X, Tu J (2019) High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett 11:12
97.
Zurück zum Zitat Tiwari JN, Dang NK, Sultan S, Thangavel P, Jeong HY, Kim KS (2020) Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat Sustain 3:556–563 Tiwari JN, Dang NK, Sultan S, Thangavel P, Jeong HY, Kim KS (2020) Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat Sustain 3:556–563
98.
Zurück zum Zitat Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998 Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998
99.
Zurück zum Zitat Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4(4):1238–1254CrossRef Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4(4):1238–1254CrossRef
100.
Zurück zum Zitat Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6(17):1600423CrossRef Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6(17):1600423CrossRef
101.
Zurück zum Zitat Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5–25 Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5–25
102.
Zurück zum Zitat Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers. Springer Verlag, LondonCrossRef Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers. Springer Verlag, LondonCrossRef
103.
Zurück zum Zitat Song Z, Cheng N, Lushington A, Sun X (2016) Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6(8):116CrossRef Song Z, Cheng N, Lushington A, Sun X (2016) Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6(8):116CrossRef
104.
Zurück zum Zitat Zhang Y, Deng L, Hu H, Qiao Y, Yuan H, Chen D, Chang M, Wei H (2020) Pomelo peel-derived, N-doped biochar microspheres as an efficient and durable metal-free ORR catalyst in microbial fuel cells. Sustain Energy Fuels 4:1642–1653 Zhang Y, Deng L, Hu H, Qiao Y, Yuan H, Chen D, Chang M, Wei H (2020) Pomelo peel-derived, N-doped biochar microspheres as an efficient and durable metal-free ORR catalyst in microbial fuel cells. Sustain Energy Fuels 4:1642–1653
105.
Zurück zum Zitat Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C-j (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5(5):1808–1825CrossRef Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C-j (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5(5):1808–1825CrossRef
106.
Zurück zum Zitat Ren Q, Wang H, Lu X-F, Tong Y-X, Li G-R (2018) Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci 5(3):1700515CrossRef Ren Q, Wang H, Lu X-F, Tong Y-X, Li G-R (2018) Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci 5(3):1700515CrossRef
107.
Zurück zum Zitat Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRef Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRef
108.
Zurück zum Zitat Dai S, Chou J-P, Wang K-W, Hsu Y-Y, Hu A, Pan X, Chen T-Y (2019) Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat Commun 10(1):440CrossRef Dai S, Chou J-P, Wang K-W, Hsu Y-Y, Hu A, Pan X, Chen T-Y (2019) Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat Commun 10(1):440CrossRef
109.
Zurück zum Zitat Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868CrossRef Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868CrossRef
110.
Zurück zum Zitat Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRef Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRef
111.
Zurück zum Zitat Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764CrossRef Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764CrossRef
112.
Zurück zum Zitat Qu K, Zheng Y, Dai S, Qiao SZ (2015) Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale 7(29):12598–12605CrossRef Qu K, Zheng Y, Dai S, Qiao SZ (2015) Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale 7(29):12598–12605CrossRef
113.
Zurück zum Zitat Deng L, Yuan H, Cai X, Ruan Y, Zhou S, Chen Y, Yuan Y (2016) Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells. Int J Hydrogen Energy 41(47):22328–22336CrossRef Deng L, Yuan H, Cai X, Ruan Y, Zhou S, Chen Y, Yuan Y (2016) Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells. Int J Hydrogen Energy 41(47):22328–22336CrossRef
114.
Zurück zum Zitat Liu Y, Ruan J, Sang S, Zhou Z, Wu Q (2016) Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim Acta 215:388–397CrossRef Liu Y, Ruan J, Sang S, Zhou Z, Wu Q (2016) Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim Acta 215:388–397CrossRef
115.
Zurück zum Zitat Li C, Sun F, Lin Y (2018) Refining cocoon to prepare (N, S, and Fe) ternary-doped porous carbon aerogel as efficient catalyst for the oxygen reduction reaction in alkaline medium. J Power Sources 384:48–57CrossRef Li C, Sun F, Lin Y (2018) Refining cocoon to prepare (N, S, and Fe) ternary-doped porous carbon aerogel as efficient catalyst for the oxygen reduction reaction in alkaline medium. J Power Sources 384:48–57CrossRef
116.
Zurück zum Zitat Guo C, Hu R, Liao W, Li Z, Sun L, Shi D, Li Y, Chen C (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238CrossRef Guo C, Hu R, Liao W, Li Z, Sun L, Shi D, Li Y, Chen C (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238CrossRef
117.
Zurück zum Zitat Kaur P, Verma G, Sekhon SS (2019) Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog Mater Sci 102:1–71CrossRef Kaur P, Verma G, Sekhon SS (2019) Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog Mater Sci 102:1–71CrossRef
118.
Zurück zum Zitat Lihua Zhou PF, Cai X, Zhou S, Yuan Y (2016) Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: a new application of spider silk. Appl Catal B 188:31–38CrossRef Lihua Zhou PF, Cai X, Zhou S, Yuan Y (2016) Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: a new application of spider silk. Appl Catal B 188:31–38CrossRef
119.
Zurück zum Zitat Li S, Xu R, Wang H, Brett DJ, Ji S, Pollet BG, Wang R (2017) Ultra-high surface area andmesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J Solid State Electrochem 21:2947–2954CrossRef Li S, Xu R, Wang H, Brett DJ, Ji S, Pollet BG, Wang R (2017) Ultra-high surface area andmesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J Solid State Electrochem 21:2947–2954CrossRef
120.
Zurück zum Zitat Yongxi Zan ZZ, Liu H, Dou M, Wang F (2017) Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction. J Mater Chem A 5:24329–24334CrossRef Yongxi Zan ZZ, Liu H, Dou M, Wang F (2017) Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction. J Mater Chem A 5:24329–24334CrossRef
121.
Zurück zum Zitat Chaudhari KN, Song MY, Yu JS (2014) Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13):2625–2636CrossRef Chaudhari KN, Song MY, Yu JS (2014) Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13):2625–2636CrossRef
122.
Zurück zum Zitat Yuan W, Feng Y, Xie A, Zhang X, Huang F, Li S, Zhang X, Shen Y (2016) Nitrogen-doped nanoporous carbon derived from waste pomelo peel as a metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 8(16):8704–8711CrossRef Yuan W, Feng Y, Xie A, Zhang X, Huang F, Li S, Zhang X, Shen Y (2016) Nitrogen-doped nanoporous carbon derived from waste pomelo peel as a metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 8(16):8704–8711CrossRef
123.
Zurück zum Zitat Ma M, You S, Wang W, Liu G, Qi D, Chen X, Qu J, Ren N (2016) Biomass-derived porous Fe3C/tungsten carbide/graphitic carbon nanocomposite for efficient electrocatalysis of oxygen reduction. ACS Appl Mater Interfaces 8(47):32307–32316CrossRef Ma M, You S, Wang W, Liu G, Qi D, Chen X, Qu J, Ren N (2016) Biomass-derived porous Fe3C/tungsten carbide/graphitic carbon nanocomposite for efficient electrocatalysis of oxygen reduction. ACS Appl Mater Interfaces 8(47):32307–32316CrossRef
124.
Zurück zum Zitat Wang Y, Zhu M, Wang G, Dai B, Yu F, Tian Z, Guo X (2017) Enhanced oxygen reduction reaction by in situ anchoring Fe(2)N nanoparticles on nitrogen-doped pomelo peel-derived carbon. Nanomaterials (Basel) 7(11) Wang Y, Zhu M, Wang G, Dai B, Yu F, Tian Z, Guo X (2017) Enhanced oxygen reduction reaction by in situ anchoring Fe(2)N nanoparticles on nitrogen-doped pomelo peel-derived carbon. Nanomaterials (Basel) 7(11)
125.
Zurück zum Zitat Li M, Zhang H, Xiao T, Wang S, Zhang B, Chen D, Su M, Tang J (2018) Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta 283(1):780–788CrossRef Li M, Zhang H, Xiao T, Wang S, Zhang B, Chen D, Su M, Tang J (2018) Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta 283(1):780–788CrossRef
126.
Zurück zum Zitat Huang Z-F, Wang J, Peng Y, Jung C-Y, Fisher A, Wang X (2017) Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater 7(23):1700544CrossRef Huang Z-F, Wang J, Peng Y, Jung C-Y, Fisher A, Wang X (2017) Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater 7(23):1700544CrossRef
127.
Zurück zum Zitat Lu G, Li Z, Fan W, Wang M, Yang S, Li J, Chang Z, Sun H, Liang S, Liu Z (2019) Sponge-like N-doped carbon materials with Co-based nanoparticles derived from biomass as highly efficient electrocatalysts for the oxygen reduction reaction in alkaline media. RSC Adv 9(9):4843–4848CrossRef Lu G, Li Z, Fan W, Wang M, Yang S, Li J, Chang Z, Sun H, Liang S, Liu Z (2019) Sponge-like N-doped carbon materials with Co-based nanoparticles derived from biomass as highly efficient electrocatalysts for the oxygen reduction reaction in alkaline media. RSC Adv 9(9):4843–4848CrossRef
128.
Zurück zum Zitat Liu Y, Su M, Li D, Li S, Li X, Zhao J, Liu F (2020) Soybean straw biomass-derived Fe–N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media. RSC Adv 10(12):6763–6771CrossRef Liu Y, Su M, Li D, Li S, Li X, Zhao J, Liu F (2020) Soybean straw biomass-derived Fe–N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media. RSC Adv 10(12):6763–6771CrossRef
129.
Zurück zum Zitat Qiao Liu YD, Zhao Q, Pan F, Zhang B, Zhang J (2014) A direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance. Langmuir 30(27):8238–8245CrossRef Qiao Liu YD, Zhao Q, Pan F, Zhang B, Zhang J (2014) A direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance. Langmuir 30(27):8238–8245CrossRef
130.
Zurück zum Zitat Xie S, Huang S, Wei W, Yang X, Liu Y, Lu X, Tong Y (2015) Chitosan waste-derived Co and N Co-doped carbon electrocatalyst for efficient oxygen reduction reaction. ChemElectroChem 2(11):1806–1812CrossRef Xie S, Huang S, Wei W, Yang X, Liu Y, Lu X, Tong Y (2015) Chitosan waste-derived Co and N Co-doped carbon electrocatalyst for efficient oxygen reduction reaction. ChemElectroChem 2(11):1806–1812CrossRef
131.
Zurück zum Zitat Li Y, Lu J (2017) Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2(6):1370–1377CrossRef Li Y, Lu J (2017) Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2(6):1370–1377CrossRef
132.
Zurück zum Zitat Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028CrossRef Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028CrossRef
133.
Zurück zum Zitat Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234CrossRef Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234CrossRef
134.
Zurück zum Zitat Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512CrossRef Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512CrossRef
135.
Zurück zum Zitat Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–43 Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–43
136.
Zurück zum Zitat Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable Zinc-air batteries: progress, challenges, and perspectives. Adv Mater 29(7):1604685 Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable Zinc-air batteries: progress, challenges, and perspectives. Adv Mater 29(7):1604685
137.
Zurück zum Zitat Lars Öjefors LC (1978) An iron—air vehicle battery. J Power Sources 2(3):287–296CrossRef Lars Öjefors LC (1978) An iron—air vehicle battery. J Power Sources 2(3):287–296CrossRef
138.
Zurück zum Zitat Zhang J, Zhou Q, Tang Y, Zhang L, Li Y (2019) Zinc-air batteries: are they ready for prime time? Chem Rev 10(39):8924–8929 Zhang J, Zhou Q, Tang Y, Zhang L, Li Y (2019) Zinc-air batteries: are they ready for prime time? Chem Rev 10(39):8924–8929
139.
Zurück zum Zitat Wang M, Lei X, Hu L, Zhang P, Hu H, Fang J (2017) High-performance waste biomass-derived microporous carbon electrocatalyst with a towel-like surface for alkaline metal/air batteries. Electrochim Acta 250:384–392CrossRef Wang M, Lei X, Hu L, Zhang P, Hu H, Fang J (2017) High-performance waste biomass-derived microporous carbon electrocatalyst with a towel-like surface for alkaline metal/air batteries. Electrochim Acta 250:384–392CrossRef
140.
Zurück zum Zitat Lei X, Wang M, Lai Y, Hu L, Wang H, Fang Z, Li J, Fang J (2017) Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. J Power Sources 365:76–82CrossRef Lei X, Wang M, Lai Y, Hu L, Wang H, Fang Z, Li J, Fang J (2017) Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. J Power Sources 365:76–82CrossRef
141.
Zurück zum Zitat Ma Z, Wang K, Qiu Y, Liu X, Cao C, Feng Y, Hu P (2018) Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143:43–55CrossRef Ma Z, Wang K, Qiu Y, Liu X, Cao C, Feng Y, Hu P (2018) Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143:43–55CrossRef
142.
Zurück zum Zitat Choudhary R, Patra S, Madhuri R, Sharma PK (2017) Cow dung derived PdNPs@WO3 porous carbon nanodiscs as trifunctional catalysts for design of zinc-air batteries and overall water splitting. ACS Sustain Chem Eng 5(11):9735–9748CrossRef Choudhary R, Patra S, Madhuri R, Sharma PK (2017) Cow dung derived PdNPs@WO3 porous carbon nanodiscs as trifunctional catalysts for design of zinc-air batteries and overall water splitting. ACS Sustain Chem Eng 5(11):9735–9748CrossRef
143.
Zurück zum Zitat Yang L, Zeng X, Wang D, Cao D (2018) Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater 12:277–283CrossRef Yang L, Zeng X, Wang D, Cao D (2018) Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater 12:277–283CrossRef
144.
Zurück zum Zitat Wei J, Zhao S, Ji L, Zhou T, Miao Y, Scott K, Li D, Yang J, Wu X (2018) Reuse of Ni-Co-Mn oxides from spent Li-ion batteries to prepare bifunctional air electrodes. Resour Conserv Recycl 129:135–142CrossRef Wei J, Zhao S, Ji L, Zhou T, Miao Y, Scott K, Li D, Yang J, Wu X (2018) Reuse of Ni-Co-Mn oxides from spent Li-ion batteries to prepare bifunctional air electrodes. Resour Conserv Recycl 129:135–142CrossRef
145.
Zurück zum Zitat Smil V (2006) Energy at the crossroad, organisation for economic co-operation and development. Paris 12 Smil V (2006) Energy at the crossroad, organisation for economic co-operation and development. Paris 12
146.
Zurück zum Zitat Anders Hagfeldt GB, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRef Anders Hagfeldt GB, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRef
147.
148.
Zurück zum Zitat Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677CrossRef Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677CrossRef
149.
Zurück zum Zitat Eser RWBaE (1997) Polycrystalline thin film solar cells: present status and future potential. Annu Rev Mater Res 27:625–653 Eser RWBaE (1997) Polycrystalline thin film solar cells: present status and future potential. Annu Rev Mater Res 27:625–653
150.
Zurück zum Zitat Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519CrossRef Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519CrossRef
151.
Zurück zum Zitat Brain O’Regan MG (1991) Alow- cost, high-effeciency solarcell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRef Brain O’Regan MG (1991) Alow- cost, high-effeciency solarcell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRef
152.
Zurück zum Zitat Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115(23):12732–12763CrossRef Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115(23):12732–12763CrossRef
153.
Zurück zum Zitat Akihiro Kojima KT, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef Akihiro Kojima KT, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRef
154.
Zurück zum Zitat Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Péchy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovoltaics Res Appl 15(7):603–612CrossRef Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Péchy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovoltaics Res Appl 15(7):603–612CrossRef
155.
Zurück zum Zitat Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361(3):572–580CrossRef Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361(3):572–580CrossRef
156.
Zurück zum Zitat Wu J, Li Y, Tang Q, Yue G, Lin J, Huang M, Meng L (2014) Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci Rep 4:4028CrossRef Wu J, Li Y, Tang Q, Yue G, Lin J, Huang M, Meng L (2014) Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci Rep 4:4028CrossRef
157.
Zurück zum Zitat Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS (2014) A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A 2(13):4474–4490CrossRef Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS (2014) A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A 2(13):4474–4490CrossRef
158.
Zurück zum Zitat Olsen E, Hagen G, Eric Lindquist S (2000) Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol Energy Mater Sol Cells 63(3):267–273CrossRef Olsen E, Hagen G, Eric Lindquist S (2000) Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol Energy Mater Sol Cells 63(3):267–273CrossRef
159.
Zurück zum Zitat Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242CrossRef Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242CrossRef
160.
Zurück zum Zitat Takurou N, Murakami SI, Qing Wang Md, Nazeeruddin Khaja, Bessho Takeru, Cesar Ilkay, Liska Paul, Humphry-Baker Robin, Comte Pascal, Péchy Péter, Grätzel Michael (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:2255–2261CrossRef Takurou N, Murakami SI, Qing Wang Md, Nazeeruddin Khaja, Bessho Takeru, Cesar Ilkay, Liska Paul, Humphry-Baker Robin, Comte Pascal, Péchy Péter, Grätzel Michael (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:2255–2261CrossRef
161.
Zurück zum Zitat Wu C-S, Chang T-W, Teng H, Lee Y-L (2016) High performance carbon black counter electrodes for dye-sensitized solar cells. Energy 115:513–518CrossRef Wu C-S, Chang T-W, Teng H, Lee Y-L (2016) High performance carbon black counter electrodes for dye-sensitized solar cells. Energy 115:513–518CrossRef
162.
Zurück zum Zitat Xu X, Huang D, Cao K, Kang M, Zakeeruddin SM, Gratzel M (2013) Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci Rep 3:1489CrossRef Xu X, Huang D, Cao K, Kang M, Zakeeruddin SM, Gratzel M (2013) Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci Rep 3:1489CrossRef
163.
Zurück zum Zitat Lodermeyer F, Costa RD, Casillas R, Kohler FTU, Wasserscheid P, Prato M, Guldi DM (2015) Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy Environ Sci 8(1):241–246CrossRef Lodermeyer F, Costa RD, Casillas R, Kohler FTU, Wasserscheid P, Prato M, Guldi DM (2015) Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy Environ Sci 8(1):241–246CrossRef
164.
Zurück zum Zitat Gong F, Xu X, Zhou G, Wang ZS (2013) Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys Chem Chem Phys 15(2):546–552CrossRef Gong F, Xu X, Zhou G, Wang ZS (2013) Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys Chem Chem Phys 15(2):546–552CrossRef
165.
Zurück zum Zitat Heo SY, Koh JK, Kim JK, Lee CS, Kim JH (2014) Three-dimensional conducting polymer films for Pt-free counter electrodes in quasi-solid-state dye-sensitized solar cells. Electrochim Acta 137:34–40CrossRef Heo SY, Koh JK, Kim JK, Lee CS, Kim JH (2014) Three-dimensional conducting polymer films for Pt-free counter electrodes in quasi-solid-state dye-sensitized solar cells. Electrochim Acta 137:34–40CrossRef
166.
Zurück zum Zitat Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6:7016–7025CrossRef Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6:7016–7025CrossRef
167.
Zurück zum Zitat Chun-Ting Li Y-LT, Ho Kuo-Chuan (2016) Earth abundant silicon composites as the electrocatalytic counter electrodes for dye-sensitized solar cells. ACS Appl Mater Interfaces 8(11):7037–7046CrossRef Chun-Ting Li Y-LT, Ho Kuo-Chuan (2016) Earth abundant silicon composites as the electrocatalytic counter electrodes for dye-sensitized solar cells. ACS Appl Mater Interfaces 8(11):7037–7046CrossRef
168.
Zurück zum Zitat Shengjie Peng LT, Liang J, Mhaisalkar SG, Ramakrishna S (2012) Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 4(1):397–404CrossRef Shengjie Peng LT, Liang J, Mhaisalkar SG, Ramakrishna S (2012) Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 4(1):397–404CrossRef
169.
Zurück zum Zitat Dong F, Guo Y, Xu P, Yin X, Li Y, He M (2017) Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Sci China Mater 60(4):295–303CrossRef Dong F, Guo Y, Xu P, Yin X, Li Y, He M (2017) Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Sci China Mater 60(4):295–303CrossRef
170.
Zurück zum Zitat Ahmed ASA, Xiang W, Gu A, Hu X, Saana IA, Zhao X (2018) Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. New J Chem 42:11715–11723 Ahmed ASA, Xiang W, Gu A, Hu X, Saana IA, Zhao X (2018) Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. New J Chem 42:11715–11723
171.
Zurück zum Zitat Wu M, Ma T (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. Chemsuschem 5(8):1343–1357CrossRef Wu M, Ma T (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. Chemsuschem 5(8):1343–1357CrossRef
172.
Zurück zum Zitat Jiang QW, Li GR, Wang F, Gao XP (2010) Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells. Electrochem Commun 12(7):924–927CrossRef Jiang QW, Li GR, Wang F, Gao XP (2010) Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells. Electrochem Commun 12(7):924–927CrossRef
173.
Zurück zum Zitat Wang C-L, Liao J-Y, Chung S-H, Manthiram A (2015) Carbonized eggshell membranes as a natural and abundant counter electrode for efficient dye-sensitized solar cells. Adv Energy Mater 5(6):1401524CrossRef Wang C-L, Liao J-Y, Chung S-H, Manthiram A (2015) Carbonized eggshell membranes as a natural and abundant counter electrode for efficient dye-sensitized solar cells. Adv Energy Mater 5(6):1401524CrossRef
174.
Zurück zum Zitat Cha SM, Nagaraju G, Sekhar SC, Bharat LK, Yu JS (2018) Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction. J Colloid Interface Sci 513:843–851CrossRef Cha SM, Nagaraju G, Sekhar SC, Bharat LK, Yu JS (2018) Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction. J Colloid Interface Sci 513:843–851CrossRef
175.
Zurück zum Zitat Xu S, Liu C, Wiezorek J (2018) 20 renewable biowastes derived carbon materials as green counter electrodes for dye-sensitized solar cells. Mater Chem Phys 204:294–304CrossRef Xu S, Liu C, Wiezorek J (2018) 20 renewable biowastes derived carbon materials as green counter electrodes for dye-sensitized solar cells. Mater Chem Phys 204:294–304CrossRef
176.
Zurück zum Zitat Wang C, Yun S, Xu H, Wang Z, Han F, Zhang Y, Si Y, Sun M (2020) Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: an efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram Int 46(3):3292–3303CrossRef Wang C, Yun S, Xu H, Wang Z, Han F, Zhang Y, Si Y, Sun M (2020) Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: an efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram Int 46(3):3292–3303CrossRef
177.
Zurück zum Zitat Shen Y (2017) Rice husk silica derived nanomaterials for sustainable applications. Renew Sustain Energy Rev 80:453–466CrossRef Shen Y (2017) Rice husk silica derived nanomaterials for sustainable applications. Renew Sustain Energy Rev 80:453–466CrossRef
178.
Zurück zum Zitat Wang G, Wang D, Kuang S, Xing W, Zhuo S (2014) Hierarchical porous carbon derived from rice husk as a low-cost counter electrode of dye-sensitized solar cells. Renewable Energy 63:708–714CrossRef Wang G, Wang D, Kuang S, Xing W, Zhuo S (2014) Hierarchical porous carbon derived from rice husk as a low-cost counter electrode of dye-sensitized solar cells. Renewable Energy 63:708–714CrossRef
179.
Zurück zum Zitat Ahmad WB, Yang Z, Khan J, Jing W, Jiang F, Chu L, Liu N, Li L, Gao Y (2016) Extraction of nano-silicon with activated carbons simultaneously from rice husk and their synergistic catalytic effect in counter electrodes of dye-sensitized solar cells. Sci Rep 6:39314CrossRef Ahmad WB, Yang Z, Khan J, Jing W, Jiang F, Chu L, Liu N, Li L, Gao Y (2016) Extraction of nano-silicon with activated carbons simultaneously from rice husk and their synergistic catalytic effect in counter electrodes of dye-sensitized solar cells. Sci Rep 6:39314CrossRef
Metadaten
Titel
Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications
verfasst von
Abdelaal S. A. Ahmed
Ibrahim Saana Amiinu
Xiujian Zhao
Mohamed Abdelmottaleb
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-68031-2_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.