Skip to main content

2018 | OriginalPaper | Buchkapitel

Watchful-Eye: A 3D Skeleton-Based System for Fall Detection of Physically-Disabled Cane Users

verfasst von : Mona Saleh Alzahrani, Salma Kammoun Jarraya, Manar Salamah Ali, Hanêne Ben-Abdallah

Erschienen in: Wireless Mobile Communication and Healthcare

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present Watchful-Eye, a 3D skeleton-based system to monitor a physically disabled person using a cane as a mobility aid. Watchful-Eye detects fall occurrences using skeleton tracking with a Microsoft Kinect camera. Compared to existing systems, it has the merit of detecting various types of fall under multiple scenarios and postures, while using a small set of features extracted from Kinect captured video streams. To achieve this merit, we followed the typical machine learning process: First, we collected a rich fall detection dataset. Second, we experimentally determined the most relevant features that best-distinguish fall from non-fall frames, and the best performing classifier. As we report in this paper, the offline evaluation results show that Watchful-Eye reached an accuracy between 87.2% and 94.5% with 5.5% to 12.8% error rate depending on the used classifier. Furthermore, the online evaluation shows that it can detect falls with an accuracy between 89.47% and 100%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014)CrossRef Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014)CrossRef
2.
3.
Zurück zum Zitat Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inf. 19, 290–301 (2015)CrossRef Stone, E.E., Skubic, M.: Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inf. 19, 290–301 (2015)CrossRef
5.
Zurück zum Zitat Kozina, S., Gjoreski, H., Gams, M., Luštrek, M.: Efficient activity recognition and fall detection using accelerometers. In: B, Juan A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 13–23. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41043-7_2CrossRef Kozina, S., Gjoreski, H., Gams, M., Luštrek, M.: Efficient activity recognition and fall detection using accelerometers. In: B, Juan A., Álvarez-García, J.A., Fujinami, K., Barsocchi, P., Riedel, T. (eds.) EvAAL 2013. CCIS, vol. 386, pp. 13–23. Springer, Heidelberg (2013). https://​doi.​org/​10.​1007/​978-3-642-41043-7_​2CrossRef
6.
Zurück zum Zitat Abdali-Mohammadi, F., Rashidpour, M., Fathi, A.: Fall detection using adaptive neuro-fuzzy inference system. Int. J. Multimed. Ubiquit. Eng. 11, 91–106 (2016)CrossRef Abdali-Mohammadi, F., Rashidpour, M., Fathi, A.: Fall detection using adaptive neuro-fuzzy inference system. Int. J. Multimed. Ubiquit. Eng. 11, 91–106 (2016)CrossRef
7.
Zurück zum Zitat Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., et al.: Fall detection-principles and methods. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1663–1666 (2007) Noury, N., Fleury, A., Rumeau, P., Bourke, A., Laighin, G., Rialle, V., et al.: Fall detection-principles and methods. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1663–1666 (2007)
8.
Zurück zum Zitat Melis, E., Torres-Moreno, R., Barbeau, H., Lemaire, E.: Analysis of assisted-gait characteristics in persons with incomplete spinal cord injury. Spinal Cord 37, 430–439 (1999)CrossRef Melis, E., Torres-Moreno, R., Barbeau, H., Lemaire, E.: Analysis of assisted-gait characteristics in persons with incomplete spinal cord injury. Spinal Cord 37, 430–439 (1999)CrossRef
11.
Zurück zum Zitat Le, T.-L., Nguyen, M.-Q.: Human posture recognition using human skeleton provided by Kinect. In: 2013 International Conference on Computing, Management and Telecommunications (ComManTel), pp. 340–345 (2013) Le, T.-L., Nguyen, M.-Q.: Human posture recognition using human skeleton provided by Kinect. In: 2013 International Conference on Computing, Management and Telecommunications (ComManTel), pp. 340–345 (2013)
12.
Zurück zum Zitat Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11, 10–18 (2009)CrossRef Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11, 10–18 (2009)CrossRef
Metadaten
Titel
Watchful-Eye: A 3D Skeleton-Based System for Fall Detection of Physically-Disabled Cane Users
verfasst von
Mona Saleh Alzahrani
Salma Kammoun Jarraya
Manar Salamah Ali
Hanêne Ben-Abdallah
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-98551-0_13

Premium Partner