Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Water and Methane in Shale Rocks: Flow Pattern Effects on Fluid Transport and Pore Structure

verfasst von : Tuan Anh Ho

Erschienen in: Nanoscale Fluid Transport

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decade, because of the shale gas revolution in the USA the fluid flow in shale nanopores have attracted great attention of scientists worldwide. In shale formation water and natural gas can co-exist within the narrow pores, leading to the possibility of two-phase flow. In this work, I designed the molecular simulation system, that include water and methane confined in slit-shape muscovite nanopore, to investigate the effect of the two-phase flow patterns on the fluids transport and on the pore structure. The results indicate that when the driving force, i.e., the pressure drop, increases above a pore-size dependent threshold the two-phase flow pattern is altered. As a result, the velocity of methane with respect to that of water changes. My results also illustrate the importance of the capillary force, due to the formation of water bridges across the clay pores, not only on the fluid flow, but also on the pore structure, in particular its width. When the water bridges are broken, perhaps because of fast fluid flow, the capillary force vanishes leading to significant pore expansion. Because muscovite is a model for illite, a clay mineral often found in shale rocks, these results advance our understanding regarding the mechanism of water and gas transport in tight shale gas formations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hughes, J. D. (2013). A reality check on the shale revolution. Nature, 494(7437), 307–308.CrossRef Hughes, J. D. (2013). A reality check on the shale revolution. Nature, 494(7437), 307–308.CrossRef
2.
Zurück zum Zitat Cipolla, C. L., Lolon, E., & Mayerhofer, M. J. (2009). Reservoir modeling and production evaluation in shale-gas reservoirs. In International Petroleum Technology Conference. Cipolla, C. L., Lolon, E., & Mayerhofer, M. J. (2009). Reservoir modeling and production evaluation in shale-gas reservoirs. In International Petroleum Technology Conference.
3.
Zurück zum Zitat Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46(10). Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology, 46(10).
4.
Zurück zum Zitat Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. International Journal of Rock Mechanics and Mining Sciences, 46(2), 229–238.CrossRef Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. International Journal of Rock Mechanics and Mining Sciences, 46(2), 229–238.CrossRef
5.
Zurück zum Zitat Ahmadlouydarab, M., Liu, Z.-S., & Feng, J. J. (2011). Interfacial flows in corrugated microchannels: Flow regimes, transitions and hysteresis. International Journal of Multiphase Flow, 37(10), 1266–1276.CrossRef Ahmadlouydarab, M., Liu, Z.-S., & Feng, J. J. (2011). Interfacial flows in corrugated microchannels: Flow regimes, transitions and hysteresis. International Journal of Multiphase Flow, 37(10), 1266–1276.CrossRef
6.
Zurück zum Zitat Ahmadlouydarab, M., Liu, Z.-S., & Feng, J. J. (2012). Relative permeability for two-phase flow through corrugated tubes as model porous media. International Journal of Multiphase Flow, 47, 85–93.CrossRef Ahmadlouydarab, M., Liu, Z.-S., & Feng, J. J. (2012). Relative permeability for two-phase flow through corrugated tubes as model porous media. International Journal of Multiphase Flow, 47, 85–93.CrossRef
7.
Zurück zum Zitat Niessner, J., Berg, S., & Hassanizadeh, S. M. (2011). Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transport in Porous Media, 88(1), 133–148.CrossRef Niessner, J., Berg, S., & Hassanizadeh, S. M. (2011). Comparison of two-phase Darcy’s law with a thermodynamically consistent approach. Transport in Porous Media, 88(1), 133–148.CrossRef
8.
Zurück zum Zitat Ziarani, A. S., & Aguilera, R. (2011). Knudsen’s permeability correction for tight porous media. Transport in Porous Media, 91(1), 239–260.CrossRef Ziarani, A. S., & Aguilera, R. (2011). Knudsen’s permeability correction for tight porous media. Transport in Porous Media, 91(1), 239–260.CrossRef
9.
Zurück zum Zitat Yethiraj, A., & Striolo, A. (2013). Fracking: What can physical chemistry offer? The Journal of Physical Chemistry Letters, 4(4), 687–690.CrossRef Yethiraj, A., & Striolo, A. (2013). Fracking: What can physical chemistry offer? The Journal of Physical Chemistry Letters, 4(4), 687–690.CrossRef
10.
Zurück zum Zitat Wu, Q. H., et al. (2014). Optic imaging of two-phase-flow behavior in 1D nanoscale channels. SPE Journal, 19(5), 793–802.CrossRef Wu, Q. H., et al. (2014). Optic imaging of two-phase-flow behavior in 1D nanoscale channels. SPE Journal, 19(5), 793–802.CrossRef
11.
Zurück zum Zitat Silin, D., & Kneafsey, T. J. (2011). Gas shale: From nanometer-scale observations to well modelling. Canadian Society for Unconventional Gas CSUG/SPE 149489. Silin, D., & Kneafsey, T. J. (2011). Gas shale: From nanometer-scale observations to well modelling. Canadian Society for Unconventional Gas CSUG/SPE 149489.
12.
Zurück zum Zitat Muskat, M., & Meres, M. W. (1936). The flow of heterogeneous fluids through porous media. Journal of Applied Physics, 7(9), 346–363. Muskat, M., & Meres, M. W. (1936). The flow of heterogeneous fluids through porous media. Journal of Applied Physics, 7(9), 346–363.
13.
Zurück zum Zitat Shao, N., Gavriilidis, A., & Angeli, P. (2009). Flow regimes for adiabatic gas–liquid flow in microchannels. Chemical Engineering Science, 64(11), 2749–2761.CrossRef Shao, N., Gavriilidis, A., & Angeli, P. (2009). Flow regimes for adiabatic gas–liquid flow in microchannels. Chemical Engineering Science, 64(11), 2749–2761.CrossRef
14.
Zurück zum Zitat Indraratna, B., & Ranjith, P. (2001). Laboratory measurement of two-phase flow parameters in rock joints based on high pressure triaxial testing. Journal of Geotechnical and Geoenvironmental Engineering, 127(6), 530–542.CrossRef Indraratna, B., & Ranjith, P. (2001). Laboratory measurement of two-phase flow parameters in rock joints based on high pressure triaxial testing. Journal of Geotechnical and Geoenvironmental Engineering, 127(6), 530–542.CrossRef
15.
Zurück zum Zitat Ranjith, P. G., Choi, S. K., & Fourar, M. (2006). Characterization of two-phase flow in a single rock joint. International journal of rock mechanics and mining sciences, 43(2), 216–223.CrossRef Ranjith, P. G., Choi, S. K., & Fourar, M. (2006). Characterization of two-phase flow in a single rock joint. International journal of rock mechanics and mining sciences, 43(2), 216–223.CrossRef
16.
Zurück zum Zitat Wu, Q., et al. (2013). Optic imaging of single and two-phase pressure-driven flows in nano-scale channels. Lab on a Chip, 13(6), 1165–1171.CrossRef Wu, Q., et al. (2013). Optic imaging of single and two-phase pressure-driven flows in nano-scale channels. Lab on a Chip, 13(6), 1165–1171.CrossRef
17.
Zurück zum Zitat Wang, J. W., Kalinichev, A. G., Kirkpatrick, R. J., & Cygan, R. T. (2005). Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics simulation. The Journal of Physical Chemistry B, 109(33), 15893–15905.CrossRef Wang, J. W., Kalinichev, A. G., Kirkpatrick, R. J., & Cygan, R. T. (2005). Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics simulation. The Journal of Physical Chemistry B, 109(33), 15893–15905.CrossRef
18.
Zurück zum Zitat Teich-McGoldrick, S. L., Greathouse, J. A., & Cygan, R. T. (2012). Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. Journal of Physical Chemistry C, 116(28), 15099–15107.CrossRef Teich-McGoldrick, S. L., Greathouse, J. A., & Cygan, R. T. (2012). Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. Journal of Physical Chemistry C, 116(28), 15099–15107.CrossRef
19.
Zurück zum Zitat Teich-McGoldrick, S. L., Greathouse, J. A., & Cygan, R. T. (2012). Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. The Journal of Physical Chemistry C, 116(28), 15099–15107.CrossRef Teich-McGoldrick, S. L., Greathouse, J. A., & Cygan, R. T. (2012). Molecular dynamics simulations of structural and mechanical properties of muscovite: Pressure and temperature effects. The Journal of Physical Chemistry C, 116(28), 15099–15107.CrossRef
20.
Zurück zum Zitat White, W. M. (2013). Geochemistry. Oxford, UK: Wiley. White, W. M. (2013). Geochemistry. Oxford, UK: Wiley.
21.
Zurück zum Zitat Pevear, D. R. (1999). Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3440–3446.CrossRef Pevear, D. R. (1999). Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3440–3446.CrossRef
22.
Zurück zum Zitat Tian, Y., & Ayers, W. B. (2010). Barnett shale (Mississippian), Fort Worth Basin, Texas: Regional variations in gas and oil production and reservoir properties. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers. Tian, Y., & Ayers, W. B. (2010). Barnett shale (Mississippian), Fort Worth Basin, Texas: Regional variations in gas and oil production and reservoir properties. In Canadian Unconventional Resources and International Petroleum Conference. Society of Petroleum Engineers.
23.
Zurück zum Zitat Blatt, H., Tracy, R., & Owens, B. (1996). Petrology: Igneous, sedimentary and metamorphic (Freeman). Blatt, H., Tracy, R., & Owens, B. (1996). Petrology: Igneous, sedimentary and metamorphic (Freeman).
24.
Zurück zum Zitat Nara, Y., Meredith, P. G., Yoneda, T., & Kaneko, K. (2011). Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics, 503(1–2), 52–59.CrossRef Nara, Y., Meredith, P. G., Yoneda, T., & Kaneko, K. (2011). Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics, 503(1–2), 52–59.CrossRef
25.
Zurück zum Zitat Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks (Vol. 46, p. 229). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1394–1395.CrossRef Tanikawa, W., & Shimamoto, T. (2009). Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks (Vol. 46, p. 229). International Journal of Rock Mechanics and Mining Sciences, 46(8), 1394–1395.CrossRef
26.
Zurück zum Zitat Docherty, S. Y., Nicholls, W. D., Borg, M. K., Lockerby, D. A., & Reese, J. M. (2014). Boundary conditions for molecular dynamics simulations of water transport through nanotubes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 186–195. Docherty, S. Y., Nicholls, W. D., Borg, M. K., Lockerby, D. A., & Reese, J. M. (2014). Boundary conditions for molecular dynamics simulations of water transport through nanotubes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(1), 186–195.
27.
Zurück zum Zitat Joseph, S., & Aluru, N. R. (2008). Why are carbon nanotubes fast transporters of water? Nano Letters, 8(2), 452–458.CrossRef Joseph, S., & Aluru, N. R. (2008). Why are carbon nanotubes fast transporters of water? Nano Letters, 8(2), 452–458.CrossRef
28.
Zurück zum Zitat Koplik, J., Banavar, J. R., & Willemsen, J. F. (1988). Molecular dynamics of Poiseuille flow and moving contact lines. Physical Review Letters, 60(13), 1282–1285.CrossRef Koplik, J., Banavar, J. R., & Willemsen, J. F. (1988). Molecular dynamics of Poiseuille flow and moving contact lines. Physical Review Letters, 60(13), 1282–1285.CrossRef
29.
Zurück zum Zitat Wang, L., Dumont, R. S., & Dickson, J. M. (2013). Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes. The Journal of Chemical Physics, 138(12), 124701.CrossRef Wang, L., Dumont, R. S., & Dickson, J. M. (2013). Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes. The Journal of Chemical Physics, 138(12), 124701.CrossRef
30.
Zurück zum Zitat Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. Journal of chemical physics, 135(14), 144701.CrossRef Kannam, S. K., Todd, B. D., Hansen, J. S., & Daivis, P. J. (2011). Slip flow in graphene nanochannels. Journal of chemical physics, 135(14), 144701.CrossRef
31.
Zurück zum Zitat Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.CrossRef Thomas, J. A., McGaughey, A. J. H., & Kuter-Arnebeck, O. (2010). Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. International Journal of Thermal Sciences, 49(2), 281–289.CrossRef
32.
Zurück zum Zitat Gong, X. J., et al. (2008). Enhancement of water permeation across a nanochannel by the structure outside the channel. Physical Review Letters, 101(25), 257801.CrossRef Gong, X. J., et al. (2008). Enhancement of water permeation across a nanochannel by the structure outside the channel. Physical Review Letters, 101(25), 257801.CrossRef
33.
Zurück zum Zitat Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16170–16175.CrossRef Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16170–16175.CrossRef
34.
Zurück zum Zitat Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer. Lauga, E., Brenner, M., & Stone, H. (2007). Handbook of experimental fluid dynamics. New York: Springer.
35.
Zurück zum Zitat Cygan, R. T., Liang, J. J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4), 1255–1266.CrossRef Cygan, R. T., Liang, J. J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4), 1255–1266.CrossRef
36.
Zurück zum Zitat Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.CrossRef Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271.CrossRef
37.
Zurück zum Zitat Martin, M. G., & Siepmann, J. I. (1998). Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B, 102(14), 2569–2577.CrossRef Martin, M. G., & Siepmann, J. I. (1998). Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B, 102(14), 2569–2577.CrossRef
38.
Zurück zum Zitat Ho, T. A., Argyris, D., Cole, D. R., & Striolo, A. (2012). Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir, 28(2), 1256–1266.CrossRef Ho, T. A., Argyris, D., Cole, D. R., & Striolo, A. (2012). Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation. Langmuir, 28(2), 1256–1266.CrossRef
39.
Zurück zum Zitat Rebrov, E. V. (2010). Two-phase flow regimes in microchannels. Theoretical Foundations of Chemical Engineering, 44(4), 355–367. Rebrov, E. V. (2010). Two-phase flow regimes in microchannels. Theoretical Foundations of Chemical Engineering, 44(4), 355–367.
40.
Zurück zum Zitat Tambach, T. J., Hensen, E. J. M., & Smit, B. (2004). Molecular simulations of swelling clay minerals. The Journal of Physical Chemistry B, 108(23), 7586–7596.CrossRef Tambach, T. J., Hensen, E. J. M., & Smit, B. (2004). Molecular simulations of swelling clay minerals. The Journal of Physical Chemistry B, 108(23), 7586–7596.CrossRef
41.
Zurück zum Zitat Rao, Q., Xiang, Y., & Leng, Y. S. (2013). Molecular simulations on the structure and dynamics of water-methane fluids between Na-montmorillonite clay surfaces at elevated temperature and pressure. Journal of Physical Chemistry C, 117(27), 14061–14069.CrossRef Rao, Q., Xiang, Y., & Leng, Y. S. (2013). Molecular simulations on the structure and dynamics of water-methane fluids between Na-montmorillonite clay surfaces at elevated temperature and pressure. Journal of Physical Chemistry C, 117(27), 14061–14069.CrossRef
Metadaten
Titel
Water and Methane in Shale Rocks: Flow Pattern Effects on Fluid Transport and Pore Structure
verfasst von
Tuan Anh Ho
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-47003-0_5