Skip to main content

2020 | OriginalPaper | Buchkapitel

Water Hyacinth for Biocomposites—An Overview

verfasst von : A. Ajithram, J. T. Winowlin Jappes, Thiagamani Senthil Muthu Kumar, Nagarajan Rajini, Anumakonda Varada Rajulu, Sanjay Mavinkere Rangappa, Suchart Siengchin

Erschienen in: Biofibers and Biopolymers for Biocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, there is a mounting interest in the utilization of natural fibers in composite materials due to their abundancy, low density and weight, low cost, recyclability and biodegradable properties. It is well known that these plant fibers are rich in cellulose and have the greater potential as reinforcements in polymeric materials to form polymer composites. Natural fibers were already proved as a better alternative for high cost synthetic fibers such as glass, carbon, kevlar and basalt etc. This article presents an overview on the environmental impact of aquatic weed water hyacinth (Eichhornea crassipe). Furthermore, emphasis is given on the extraction of fibers from water hyacinth, fabrication of composites and the effective utilization of the extracted natural fiber in composite materials for various applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Herrera-Franco, P. J., & Valadez-Gonzalez, A. (2005). A study of the mechanical properties of short natural—fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608.CrossRef Herrera-Franco, P. J., & Valadez-Gonzalez, A. (2005). A study of the mechanical properties of short natural—fiber reinforced composites. Composites Part B: Engineering, 36(8), 597–608.CrossRef
2.
Zurück zum Zitat Tan, S.J., Supri, A.J., & Chong, K.M. (2007). Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer. Polymer Bulletin, 1387–1393. Tan, S.J., Supri, A.J., & Chong, K.M. (2007). Properties of recycled high-density polyethylene/water hyacinth fiber composites: the effect of different concentration of compatibilizer. Polymer Bulletin, 1387–1393.
3.
Zurück zum Zitat Bhattacharya, A., & Kumar, P. (2010). Water hyacinth as a potential biofuel crop. Electronic journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122. Bhattacharya, A., & Kumar, P. (2010). Water hyacinth as a potential biofuel crop. Electronic journal of Environmental, Agricultural and Food Chemistry, 9(1), 112–122.
4.
Zurück zum Zitat Hairul, A., Hendri, P., Sapuan, S.M., & Ishak, M.R. (2013). Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451. Hairul, A., Hendri, P., Sapuan, S.M., & Ishak, M.R. (2013). Effect of alkalization on mechanical properties of water hyacinth fibers-unsaturated polyester composites, Polymer-Plastics Technology and Engineering, 52, 446–451.
5.
Zurück zum Zitat Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138.CrossRef Malik, A. (2007). Environmental challenge vis a vis opportunity: The case of water hyacinth. Environment International, 33(1), 122–138.CrossRef
6.
Zurück zum Zitat Mansour, O., Abdel-Hady, B., Ibrahem, S.K., & Goda, M. (2011). Polymer Plastic Tech Engineering, 40, 311. Mansour, O., Abdel-Hady, B., Ibrahem, S.K., & Goda, M. (2011). Polymer Plastic Tech Engineering, 40, 311.
7.
Zurück zum Zitat Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva, L., & Garcia Gonzalez, L. (2015). Composites from water hyacinth and polyester resin. Fibers and Polymers, 16(1), 196–200.CrossRef Flores Ramirez, N., Sanchez Hernandez, Y., Cruz de Leon, J., Vasquez Garcia, S. R., Domratcheva, L., & Garcia Gonzalez, L. (2015). Composites from water hyacinth and polyester resin. Fibers and Polymers, 16(1), 196–200.CrossRef
8.
Zurück zum Zitat Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S., Sapuan, SM., & Ihak, R. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129 Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Ilhamdi, Arief, S., Sapuan, SM., & Ihak, R. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129
9.
Zurück zum Zitat Supri, A. G., Tan, S. J., Ismail, H., & Teh, P. L. (2013). Enhancing Interfacial Adhesion performance by using Poly (vinyl alcohol) in (low-density polyethylene)/(natural rubber)/(water hyacinth fiber) composites. Journal of Vinyl & Additive Technology, 19, 47–54.CrossRef Supri, A. G., Tan, S. J., Ismail, H., & Teh, P. L. (2013). Enhancing Interfacial Adhesion performance by using Poly (vinyl alcohol) in (low-density polyethylene)/(natural rubber)/(water hyacinth fiber) composites. Journal of Vinyl & Additive Technology, 19, 47–54.CrossRef
10.
Zurück zum Zitat Phenology, T. H. E., Hyacinth, W., Lake, F., & Spencer, N. R. (1981). Aquatic Botany, 10(1–32), 10. Phenology, T. H. E., Hyacinth, W., Lake, F., & Spencer, N. R. (1981). Aquatic Botany, 10(1–32), 10.
11.
Zurück zum Zitat Kgser, H.J.K., & Schmalstieg, G. (1982). Densification of water hyacinth basic data, 61, 791–798. Kgser, H.J.K., & Schmalstieg, G. (1982). Densification of water hyacinth basic data, 61, 791–798.
12.
Zurück zum Zitat Solms, M. (2018). the resource utilization of water hyacinth. Journal of Environmental Management, 87. Solms, M. (2018). the resource utilization of water hyacinth. Journal of Environmental Management, 87.
13.
Zurück zum Zitat Tumolva, T., Ortenero, J., Kubouchi, M., & City. (2019). Characterization and treatment of water. International Journal of Engineering and Technology, 8(1.9), 1–11. Tumolva, T., Ortenero, J., Kubouchi, M., & City. (2019). Characterization and treatment of water. International Journal of Engineering and Technology, 8(1.9), 1–11.
14.
Zurück zum Zitat Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289.CrossRef Sahari, J., Sapuan, S. M., Zainudin, E. S., & Maleque, M. A. (2013). Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials and Design, 49, 285–289.CrossRef
15.
Zurück zum Zitat Singha, A.S., & Thakur, V.K. (2014). Physical, Chemical and Mechanical Properties of Hibiscus sabdariffa Fiber/Polymer Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 37–41. Singha, A.S., & Thakur, V.K. (2014). Physical, Chemical and Mechanical Properties of Hibiscus sabdariffa Fiber/Polymer Composite. International Journal of Polymeric Materials and Polymeric Biomaterials, 37–41.
16.
Zurück zum Zitat Sundari, M. T., & Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers, 87(2), 1701–1705.CrossRef Sundari, M. T., & Ramesh, A. (2012). Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—Eichhornia crassipes. Carbohydrate Polymers, 87(2), 1701–1705.CrossRef
17.
Zurück zum Zitat Ghani, S.A., & Lim, B.Y. (2009). Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96 Ghani, S.A., & Lim, B.Y. (2009). Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites. Journal of Physical Science, 20(2), 85–96
18.
Zurück zum Zitat Supri, A.G., Tan, S.J., & Teh, P.L. (2011). Effect of poly (methyl Methacrylate) modified water hyacinth fiber on properties of low density Polyethylene/Natural Rubber/Water Hyacinth Fiber Composites. Polymer Plastics Technology and Engineering, 2559(2016). Supri, A.G., Tan, S.J., & Teh, P.L. (2011). Effect of poly (methyl Methacrylate) modified water hyacinth fiber on properties of low density Polyethylene/Natural Rubber/Water Hyacinth Fiber Composites. Polymer Plastics Technology and Engineering, 2559(2016).
19.
Zurück zum Zitat Reddy, K.R., & Sutton, D.L. (1984). Reviews and analyses Waterhyacinths for Water Quality Improvement. Journal of Environmental Quality, 13(4868). Reddy, K.R., & Sutton, D.L. (1984). Reviews and analyses Waterhyacinths for Water Quality Improvement. Journal of Environmental Quality, 13(4868).
20.
Zurück zum Zitat Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Biosource Technology, 86, 221–225.CrossRef Singhal, V., & Rai, J. P. N. (2003). Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Biosource Technology, 86, 221–225.CrossRef
21.
Zurück zum Zitat Verma, V. K., Singh, Y. P., & Rai, J. P. N. (2007). Biogas production from plant biomass used for phytoremediation of industrial wastes. Biosource Technology, 98, 1664–1669.CrossRef Verma, V. K., Singh, Y. P., & Rai, J. P. N. (2007). Biogas production from plant biomass used for phytoremediation of industrial wastes. Biosource Technology, 98, 1664–1669.CrossRef
22.
Zurück zum Zitat Bernard, P., Lhote, A., & Legube, B. (2019). Principal component analysis : an appropriate tool for water quality evaluation and management—application to a tropical lake system. Ecological Modelling, 178, 295–311 Bernard, P., Lhote, A., & Legube, B. (2019). Principal component analysis : an appropriate tool for water quality evaluation and management—application to a tropical lake system. Ecological Modelling, 178, 295–311
23.
Zurück zum Zitat Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2008). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44–49.CrossRef Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2008). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44–49.CrossRef
24.
Zurück zum Zitat Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9.CrossRef Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., & Hafizulhaq, F. (2018). Mechanical properties of a water hyacinth nanofiber cellulose reinforced thermoplastic starch bionanocomposite: Effect of ultrasonic vibration during processing. Fibers, 6(2), 1–9.CrossRef
25.
Zurück zum Zitat Abral, H., Lawrensius, V., Handayani, D., & Sugiarti, E. (2018). Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydrate Polymers, 191(September 2017), 161–167. Abral, H., Lawrensius, V., Handayani, D., & Sugiarti, E. (2018). Preparation of nano-sized particles from bacterial cellulose using ultrasonication and their characterization. Carbohydrate Polymers, 191(September 2017), 161–167.
26.
Zurück zum Zitat Bledzki, A. K., Reihmane, S., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: A literature review. Polymer—Plastics Technology and Engineering, 37(4), 451–468.CrossRef Bledzki, A. K., Reihmane, S., & Gassan, J. (1998). Thermoplastics reinforced with wood fillers: A literature review. Polymer—Plastics Technology and Engineering, 37(4), 451–468.CrossRef
27.
Zurück zum Zitat Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011. Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011.
28.
Zurück zum Zitat Moorhead, K. K., Reddy, K. R., & Graetz, D. A. (1988). Water hyacinth productivity and detritus accumulation. Hydrobiologia, 157(2), 179–185.CrossRef Moorhead, K. K., Reddy, K. R., & Graetz, D. A. (1988). Water hyacinth productivity and detritus accumulation. Hydrobiologia, 157(2), 179–185.CrossRef
29.
Zurück zum Zitat Patel, V., Desai, M., & Madamwar, D. (1993). Thermochemical pretreatment of water hyacinth for improved biomethanation. Applied Biochemistry and Biotechnology, 42(1), 67–74.CrossRef Patel, V., Desai, M., & Madamwar, D. (1993). Thermochemical pretreatment of water hyacinth for improved biomethanation. Applied Biochemistry and Biotechnology, 42(1), 67–74.CrossRef
30.
Zurück zum Zitat Jarukumjorn, K., & Suppakarn, N. (2009). Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Composites Part B: Engineering, 40(7), 623–627.CrossRef Jarukumjorn, K., & Suppakarn, N. (2009). Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Composites Part B: Engineering, 40(7), 623–627.CrossRef
31.
Zurück zum Zitat Reed, K. E. (1980). Dynamic mechanical analysis of fiber reinforced composites. Polymer Composites, 1(1), 44–49.CrossRef Reed, K. E. (1980). Dynamic mechanical analysis of fiber reinforced composites. Polymer Composites, 1(1), 44–49.CrossRef
32.
Zurück zum Zitat Taylor, P., Van Wyk, E., & Van Wilgen, B.W. (2002). The cost of water hyacinth control in South Africa. African Journal of Aqatic Science, 37–41. Taylor, P., Van Wyk, E., & Van Wilgen, B.W. (2002). The cost of water hyacinth control in South Africa. African Journal of Aqatic Science, 37–41.
33.
Zurück zum Zitat Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites : An overview. Natural Resources, 108–114. Sanjay, M.R., Arpitha, G.R., Naik, L.L., Gopalakrishna, K., & Yogesha, B. (2016). Applications of natural fibers and its composites : An overview. Natural Resources, 108–114.
34.
Zurück zum Zitat Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172. Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172.
35.
Zurück zum Zitat Zhou, W., Zhu, D., Tan, L., Liao, S., Hu, Z., & Hamilton, D. (2007). Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technology, 98(1), 226–231.CrossRef Zhou, W., Zhu, D., Tan, L., Liao, S., Hu, Z., & Hamilton, D. (2007). Extraction and retrieval of potassium from water hyacinth (Eichhornia crassipes). Bioresource Technology, 98(1), 226–231.CrossRef
36.
Zurück zum Zitat Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Arief, S., Sapuan, S. M., et al. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129.CrossRef Abral, H., Kadriadi, D., Rodianus, A., Mastariyanto, P., Arief, S., Sapuan, S. M., et al. (2014). Mechanical properties of water hyacinth fibers—polyester composites before and after immersion in water. Materials and Design, 58, 125–129.CrossRef
37.
Zurück zum Zitat Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood—plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composite Part B: Engineering, 39, 807–815.CrossRef Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood—plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composite Part B: Engineering, 39, 807–815.CrossRef
38.
Zurück zum Zitat Goswami, T., & Saikia, C. N. (1995). Water hyacinth—a potential source of raw material for greaseproof paper. 50(1994), 235–238. Goswami, T., & Saikia, C. N. (1995). Water hyacinth—a potential source of raw material for greaseproof paper. 50(1994), 235–238.
39.
Zurück zum Zitat Temi, T., & Michael, H. Jr. (2007). Adsorption of methyl red by water-hyacinth (Eichornia crassipes). Biomass Chemistry and Biodiversity, 4. Temi, T., & Michael, H. Jr. (2007). Adsorption of methyl red by water-hyacinth (Eichornia crassipes). Biomass Chemistry and Biodiversity, 4.
40.
Zurück zum Zitat Mishima, D. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce. Bio resource Technology, 99, 2495–2500.CrossRef Mishima, D. (2008). Ethanol production from candidate energy crops: Water hyacinth (Eichhornia crassipes) and water lettuce. Bio resource Technology, 99, 2495–2500.CrossRef
41.
Zurück zum Zitat Rezania, S., Fadhil, M., & Fatimah, S. (2016). Evaluation of water hyacinth (Eichornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773. Rezania, S., Fadhil, M., & Fatimah, S. (2016). Evaluation of water hyacinth (Eichornia crassipes) as a potential raw material source for briquette production. Energy, 111, 768–773.
Metadaten
Titel
Water Hyacinth for Biocomposites—An Overview
verfasst von
A. Ajithram
J. T. Winowlin Jappes
Thiagamani Senthil Muthu Kumar
Nagarajan Rajini
Anumakonda Varada Rajulu
Sanjay Mavinkere Rangappa
Suchart Siengchin
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.