Skip to main content

2018 | OriginalPaper | Buchkapitel

Water–Lithium Bromide Absorption Chillers for Solar Cooling

verfasst von : Ashok Verma, Satish, Prodyut R. Chakraborty

Erschienen in: Applications of Solar Energy

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar thermal resources can be effectively utilized to meet the refrigeration and air-conditioning demands for both household and industrial purposes. Considerable fraction of total available electricity is consumed by the conventional vapor compression refrigeration systems (VCRS) during the summer season in countries with tropical climate. The leakage of VCRS refrigerants in the atmosphere has also been identified as one of the major contributors toward ozone layer depletion and hence global warming. The utilization of solar thermal energy for obtaining refrigeration and air-conditioning is the key to address these issues concerning high electricity demand as well as the environmental pollution. Solar thermal energy, being one of the leading resources of green energy, can reduce the carbon footprint considerably, when used for sorption cooling process. The advantages of using sorption cooling systems powered by solar thermal energy over VCRS are twofold when we consider environmental issues. Sorption-based solar thermal cooling reduces the electricity demand for cooling to a large extent, which in turn reduces usage of fossil fuels to produce this electricity, and thus leads to low-carbon footprint. Also, the refrigerants used for sorption cooling are less prone to cause ozone layer depletion. Although sorption-based refrigeration systems driven by solar thermal energy are mature technologies, wide acceptability of such cooling system is yet to be achieved. Two major limitations of sorption-based solar thermal cooling are relatively low coefficient of performance (COP), and large volume requirement. Other than these two limitations, the intermittent nature of solar thermal resource and heat exchanger and control mechanism design complicacies also pose considerable challenge. Sorption cooling technology can be broadly classified base on absorption and adsorption processes. Absorption is a volumetric phenomenon where a substance of one state gets absorbed in another substance in a different state with or without having chemical reaction, such as liquid being absorbed by solid or gas being absorbed by liquid. On the other hand, adsorption is a surface phenomenon due to physical bonding forces such as Van der walls forces between a solid surface and adjacent fluid or due to chemical bonding between the two. The discussion in this chapter is attributed to Water–Lithium Bromide-based absorption cooling systems. The discussion emphasizes on fundamental concepts of absorption refrigeration cycle, starting with simplest intermittent vapor absorption refrigeration system and gradually elaborating toward the operating principles of commercially used chillers at the end. Cycle analysis of most commonly used single-effect absorption chillers is discussed in a detailed manner along with the background knowledge of how to determine pertinent thermodynamic properties at the inlet and outlet of individual components. Finally, methods and design criteria that can improve the system performance are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kaita Y (2001) Thermodynamic properties of lithium bromide–water solutions at high temperatures. Int J Refrig 24(5):374–390CrossRef Kaita Y (2001) Thermodynamic properties of lithium bromide–water solutions at high temperatures. Int J Refrig 24(5):374–390CrossRef
3.
Zurück zum Zitat Muhumuza R, Strachan P (2010) Modelling, implementation and simulation of a single-effect absorption chiller in MERIT. Master of Science in Renewable Energy Systems and the Environment. University of Strathclyde Engineering, Scotland Muhumuza R, Strachan P (2010) Modelling, implementation and simulation of a single-effect absorption chiller in MERIT. Master of Science in Renewable Energy Systems and the Environment. University of Strathclyde Engineering, Scotland
4.
Zurück zum Zitat Herold KE, Radermacher R, Klein SA (2016) Absorption chillers and heat pumps. CRC Press (2016) Herold KE, Radermacher R, Klein SA (2016) Absorption chillers and heat pumps. CRC Press (2016)
5.
Zurück zum Zitat Bergman TL, Frank PI (2011) Fundamentals of heat and mass transfer. Wiley Bergman TL, Frank PI (2011) Fundamentals of heat and mass transfer. Wiley
6.
Zurück zum Zitat Iyoki S, Uemura T (1989) Vapour pressure of the water—lithium bromide system and the water—lithium bromide—zinc bromide—lithium chloride system at high temperatures. Int J Refrig 12(5):278–282CrossRef Iyoki S, Uemura T (1989) Vapour pressure of the water—lithium bromide system and the water—lithium bromide—zinc bromide—lithium chloride system at high temperatures. Int J Refrig 12(5):278–282CrossRef
7.
Zurück zum Zitat ASHRAE Handbooks. Fundamentals (2009) American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta ASHRAE Handbooks. Fundamentals (2009) American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta
8.
Zurück zum Zitat Florides GA, Kalogirou SA, Tassou SA, Wrobel LC (2003) Design and construction of a LiBr-water absorption machine. Energy Convers Manag 44:2483–2508CrossRef Florides GA, Kalogirou SA, Tassou SA, Wrobel LC (2003) Design and construction of a LiBr-water absorption machine. Energy Convers Manag 44:2483–2508CrossRef
9.
Zurück zum Zitat Jeter SM, Lenard JLY (1992) A.S. TejaProperties of lithium–bromide–water solutions at high temperatures and concentrations—part IV: vapor pressure. ASHRAE Trans 98(1):167–172 Jeter SM, Lenard JLY (1992) A.S. TejaProperties of lithium–bromide–water solutions at high temperatures and concentrations—part IV: vapor pressure. ASHRAE Trans 98(1):167–172
10.
Zurück zum Zitat Feuerecker G, Scharfe J, Greiter I, Frank C, Alfeld G (1993) Measurement of thermophysical properties of LiBr–solutions at high temperatures and concentrations. In: International absorption heat pump conference ASME, AES, vol 31, pp 493–99 Feuerecker G, Scharfe J, Greiter I, Frank C, Alfeld G (1993) Measurement of thermophysical properties of LiBr–solutions at high temperatures and concentrations. In: International absorption heat pump conference ASME, AES, vol 31, pp 493–99
11.
Zurück zum Zitat Uemura T, Hasaba S (1964) Studies on the lithium bromide-water absorption refrigeration machine. Technology Reports of Kansai University, vol 6, pp 31–55 Uemura T, Hasaba S (1964) Studies on the lithium bromide-water absorption refrigeration machine. Technology Reports of Kansai University, vol 6, pp 31–55
12.
Zurück zum Zitat McNeely LA (1979) Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans 85(Part 1):413–434 McNeely LA (1979) Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans 85(Part 1):413–434
13.
Zurück zum Zitat Patterson MR (1988) H. Perez-BrancoNumerical fits of the properties of lithium–bromide water solutions. ASHRAE Trans 94(part2):2379–2388 Patterson MR (1988) H. Perez-BrancoNumerical fits of the properties of lithium–bromide water solutions. ASHRAE Trans 94(part2):2379–2388
14.
Zurück zum Zitat Ali AHH, Noeres P, Pollerberg C (2008) Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorption chiller. Sol Energy 82.11:1021–1030 Ali AHH, Noeres P, Pollerberg C (2008) Performance assessment of an integrated free cooling and solar powered single-effect lithium bromide-water absorption chiller. Sol Energy 82.11:1021–1030
15.
Zurück zum Zitat Kaushik SC, Arora Akhilesh (2009) Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int J Refrig 32(6):1247–1258CrossRef Kaushik SC, Arora Akhilesh (2009) Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int J Refrig 32(6):1247–1258CrossRef
16.
Zurück zum Zitat Kaushik SC, Arora Akhilesh (2009) Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int J Refrig 32(6):1247–1258CrossRef Kaushik SC, Arora Akhilesh (2009) Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int J Refrig 32(6):1247–1258CrossRef
17.
Zurück zum Zitat Şencan Arzu, Yakut Kemal A, Kalogirou Soteris A (2005) Exergy analysis of lithium bromide/water absorption systems. Renew Energy 30(5):645–657CrossRef Şencan Arzu, Yakut Kemal A, Kalogirou Soteris A (2005) Exergy analysis of lithium bromide/water absorption systems. Renew Energy 30(5):645–657CrossRef
18.
Zurück zum Zitat Srikhirin Pongsid, Aphornratana Satha, Chungpaibulpatana Supachart (2001) A review of absorption refrigeration technologies. Renew Sustain Energy Rev 5(4):343–372CrossRef Srikhirin Pongsid, Aphornratana Satha, Chungpaibulpatana Supachart (2001) A review of absorption refrigeration technologies. Renew Sustain Energy Rev 5(4):343–372CrossRef
19.
Zurück zum Zitat Kilic Muhsin, Kaynakli Omer (2007) Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system. Energy 32(8):1505–1512CrossRef Kilic Muhsin, Kaynakli Omer (2007) Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system. Energy 32(8):1505–1512CrossRef
20.
Zurück zum Zitat Izquierdo M, Lizarte R, Marcos JD, Gutiérrez G (2008) Air conditioning using an air-cooled single effect lithium bromide absorption chiller: results of a trial conducted in Madrid in August 2005. Appl Therm Eng 28(8):1074–1081CrossRef Izquierdo M, Lizarte R, Marcos JD, Gutiérrez G (2008) Air conditioning using an air-cooled single effect lithium bromide absorption chiller: results of a trial conducted in Madrid in August 2005. Appl Therm Eng 28(8):1074–1081CrossRef
21.
Zurück zum Zitat Sarbu I, Sebarchievici C (2013) Review of solar refrigeration and cooling systems. Energy Build 67:286–297CrossRef Sarbu I, Sebarchievici C (2013) Review of solar refrigeration and cooling systems. Energy Build 67:286–297CrossRef
22.
Zurück zum Zitat Puig-Arnavat M, López-Villada J, Bruno JC, Coronas A (2010) Analysis and parameter identification for characteristic equations of single-and double-effect absorption chillers by means of multivariable regression. Int J Refrig 33(1):70–78CrossRef Puig-Arnavat M, López-Villada J, Bruno JC, Coronas A (2010) Analysis and parameter identification for characteristic equations of single-and double-effect absorption chillers by means of multivariable regression. Int J Refrig 33(1):70–78CrossRef
23.
Zurück zum Zitat Yin H, Qu M, Archer DH (2010) Model based experimental performance analysis of a microscale LiBr–H 2 O steam-driven double-effect absorption Chiller. Appl Therm Eng 30(13):1741–1750CrossRef Yin H, Qu M, Archer DH (2010) Model based experimental performance analysis of a microscale LiBr–H 2 O steam-driven double-effect absorption Chiller. Appl Therm Eng 30(13):1741–1750CrossRef
24.
Zurück zum Zitat Chidambaram LA, Ramana AS, Kamaraj G, Velraj R (2011) Review of solar cooling methods and thermal storage options. Renew Sustain Energy Rev 15(6):3220–3228CrossRef Chidambaram LA, Ramana AS, Kamaraj G, Velraj R (2011) Review of solar cooling methods and thermal storage options. Renew Sustain Energy Rev 15(6):3220–3228CrossRef
Metadaten
Titel
Water–Lithium Bromide Absorption Chillers for Solar Cooling
verfasst von
Ashok Verma
Satish
Prodyut R. Chakraborty
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7206-2_11