Skip to main content

2013 | OriginalPaper | Buchkapitel

13. Water Nanodroplets: Molecular Drag and Self-assembly

verfasst von : J. Russell, B. Wang, N. Patra, P. Král

Erschienen in: Nanodroplets

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Directed transport and self-assembly of nanomaterials can potentially be facilitated by water nanodroplets, which could carry reactants or serve as a selective catalyst. We show by molecular dynamics simulations that water nanodroplets can be transported along and around the surfaces of vibrated carbon nanotubes. We show a second transport method where ions intercalated in carbon and boron-nitride nanotubes can be solvated at distance in polarizable nanodroplets adsorbed on their surfaces. When the ions are driven in the nanotubes by electric fields, the adsorbed droplets are dragged together with them. Finally, we demonstrate that water nanodroplets can activate and guide the folding of planar graphene nanostructures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In the MD simulations, we apply the Langevin dynamics with 0.01 ps−1 damping coefficient, to minimize the unphysical loss of momentum [16], and the time step is 1 fs. The systems are simulated as NVT ensembles inside periodic cells of the following sizes: Fig. 13.9 (55 × 35 × 35 nm3), Fig. 13.10 (up) (30 × 35 × 35 nm3), Fig. 13.10 (bottom) (30 × 35 × 35 nm3), Fig. 13.11 (15 × 85 × 25 nm3), Fig. 13.12 (20 × 120 × 20 nm3), and Fig. 13.14 (20 × 75 × 20 nm3). The graphene–water (or graphene–graphene) binding energies are calculated as the difference of the total vdW energy of the system, when the system components are at the normal binding distance, and when they are separated by 5 nm. Averaging of the energies is done over 100 consecutive frames of the simulation trajectory, with a 1 ps time interval.
 
Literatur
1.
Zurück zum Zitat Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRef
2.
Zurück zum Zitat Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. World Scientific, London (1998)CrossRef Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. World Scientific, London (1998)CrossRef
3.
Zurück zum Zitat Král, P., Tománek, D.: Laser-driven atomic pump. Phys. Rev. Lett. 83, 5373–5376 (1999)CrossRef Král, P., Tománek, D.: Laser-driven atomic pump. Phys. Rev. Lett. 83, 5373–5376 (1999)CrossRef
4.
Zurück zum Zitat Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)CrossRef Regan, B.C., Aloni, S., Ritchie, R.O., Dahmen, U., Zettl, A.: Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004)CrossRef
5.
Zurück zum Zitat Svensson, K., Olin, H., Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901 (2004)CrossRef Svensson, K., Olin, H., Olsson, E.: Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901 (2004)CrossRef
6.
Zurück zum Zitat Wang, B., Král, P.: Coulombic dragging of molecules on surfaces induced by separately flowing liquids. J. Am. Chem. Soc. 128, 15984 (2006)CrossRef Wang, B., Král, P.: Coulombic dragging of molecules on surfaces induced by separately flowing liquids. J. Am. Chem. Soc. 128, 15984 (2006)CrossRef
7.
Zurück zum Zitat Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef
8.
Zurück zum Zitat Zhao, Y.C., Song, L., Deng, K., Liu, Z., Zhang, Z.X., Yang, Y.L., Wang, C., Yang, H.F., Jin, A.Z., Luo, Q., Gu, C.Z., Xie, S.S., Sun, L.F.: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20, 1772–1776 (2008)CrossRef Zhao, Y.C., Song, L., Deng, K., Liu, Z., Zhang, Z.X., Yang, Y.L., Wang, C., Yang, H.F., Jin, A.Z., Luo, Q., Gu, C.Z., Xie, S.S., Sun, L.F.: Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 20, 1772–1776 (2008)CrossRef
9.
Zurück zum Zitat Schoen, P.A.E., Walther, J.H., Arcidiacono, S., Poulikakos, D., Koumoutsakos, P.: Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano Lett. 6, 1910–1917 (2006)CrossRef Schoen, P.A.E., Walther, J.H., Arcidiacono, S., Poulikakos, D., Koumoutsakos, P.: Nanoparticle traffic on helical tracks: thermophoretic mass transport through carbon nanotubes. Nano Lett. 6, 1910–1917 (2006)CrossRef
10.
Zurück zum Zitat Barreiro, A., Rurali, R., Hernandez, E.R., Moser, J., Pichler, T., Forro, L., Bachtold, A.: Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science 320, 775–778 (2008)CrossRef Barreiro, A., Rurali, R., Hernandez, E.R., Moser, J., Pichler, T., Forro, L., Bachtold, A.: Subnanometer motion of cargoes driven by thermal gradients along carbon nanotubes. Science 320, 775–778 (2008)CrossRef
11.
Zurück zum Zitat Zambrano, H.A., Walther, J.H., Koumoutsakos, P., Sbalzarini, I.F.: Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 9, 66–71 (2006)CrossRef Zambrano, H.A., Walther, J.H., Koumoutsakos, P., Sbalzarini, I.F.: Thermophoretic motion of water nanodroplets confined inside carbon nanotubes. Nano Lett. 9, 66–71 (2006)CrossRef
12.
Zurück zum Zitat Shiomi, J., Maruyama, S.: Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20, 055708 (2009)CrossRef Shiomi, J., Maruyama, S.: Water transport inside a single-walled carbon nanotube driven by a temperature gradient. Nanotechnology 20, 055708 (2009)CrossRef
13.
Zurück zum Zitat Insepov, Z., Wolf, D., Hassanein, A.: Nanopumping using carbon nanotubes. Nano Lett. 6, 1893–1895 (2006)CrossRef Insepov, Z., Wolf, D., Hassanein, A.: Nanopumping using carbon nanotubes. Nano Lett. 6, 1893–1895 (2006)CrossRef
14.
Zurück zum Zitat Wang, Q.: Atomic transportation via carbon nanotubes. Nano Lett. 9, 245–249 (2009)CrossRef Wang, Q.: Atomic transportation via carbon nanotubes. Nano Lett. 9, 245–249 (2009)CrossRef
15.
Zurück zum Zitat Russell, J.T., Wang, B., Král, P.: Nanodroplet transport on vibrated nanotubes. Phys. Chem. Lett. 3, 313–357 (2012) Russell, J.T., Wang, B., Král, P.: Nanodroplet transport on vibrated nanotubes. Phys. Chem. Lett. 3, 313–357 (2012)
16.
Zurück zum Zitat Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef Wang, B., Král, P.: Dragging of polarizable nanodroplets by distantly solvated ions. Phys. Rev. Lett. 101, 046103 (2008)CrossRef
17.
Zurück zum Zitat Patra, N., Wang, B., Král, P.: Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009)CrossRef Patra, N., Wang, B., Král, P.: Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 9, 3766–3771 (2009)CrossRef
18.
Zurück zum Zitat Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRef Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)CrossRef
19.
Zurück zum Zitat MacKerell, A.D. Jr., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E. III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3617 (1998)CrossRef MacKerell, A.D. Jr., Bashford, D., Bellot, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E. III, Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3617 (1998)CrossRef
20.
Zurück zum Zitat Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRef
21.
Zurück zum Zitat Frisch, M.J., et al: Gaussian 03, Revision C.02. Gaussian, Wallingford (2004) Frisch, M.J., et al: Gaussian 03, Revision C.02. Gaussian, Wallingford (2004)
22.
Zurück zum Zitat Vukovic, L., Král, P.: Coulombically driven rolling of nanorods on water Phys. Rev. Lett. 103, 246103 (2009)CrossRef Vukovic, L., Král, P.: Coulombically driven rolling of nanorods on water Phys. Rev. Lett. 103, 246103 (2009)CrossRef
23.
Zurück zum Zitat Tersoff, J.: Energies of fullerenes. J. Phys. Rev. B 46, 15546–15549 (1992)CrossRef Tersoff, J.: Energies of fullerenes. J. Phys. Rev. B 46, 15546–15549 (1992)CrossRef
24.
Zurück zum Zitat Kudin, K.N., Scuseria, E.G.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406–234515 (2001)CrossRef Kudin, K.N., Scuseria, E.G.: C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 64, 235406–234515 (2001)CrossRef
25.
Zurück zum Zitat Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415–115425 (2004)CrossRef Arroyo, M., Belytschko, T.: Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 69, 115415–115425 (2004)CrossRef
26.
Zurück zum Zitat Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002–102007 (2009)CrossRef Lu, Q., Arroyo, M., Huang, R.: Elastic bending modulus of monolayer graphene. J. Phys. D Appl. Phys. 42, 102002–102007 (2009)CrossRef
27.
Zurück zum Zitat Wang, Z., Zhe, J.: Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11, 1280–1285 (2011)CrossRef Wang, Z., Zhe, J.: Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11, 1280–1285 (2011)CrossRef
28.
Zurück zum Zitat Hashimoto, H., Koike, Y., Ueha, S.: Transporting objects without contact using flexural travelling waves. J. Acoust. Soc. Am. 103, 3230–3233 (1998)CrossRef Hashimoto, H., Koike, Y., Ueha, S.: Transporting objects without contact using flexural travelling waves. J. Acoust. Soc. Am. 103, 3230–3233 (1998)CrossRef
29.
Zurück zum Zitat Kim, G.H., Park, J.W., Jeong, S.H.: Analysis of dynamic characteristics for vibration of flexural beam in ultrasonic transport system. J. Mech. Sci. Technol. 23, 1428–1434 (2009)CrossRef Kim, G.H., Park, J.W., Jeong, S.H.: Analysis of dynamic characteristics for vibration of flexural beam in ultrasonic transport system. J. Mech. Sci. Technol. 23, 1428–1434 (2009)CrossRef
30.
Zurück zum Zitat Miranda, E.C., Thomsen, J.J.: Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass. Nonlinear Dyn. 19, 167–186 (1998)CrossRef Miranda, E.C., Thomsen, J.J.: Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass. Nonlinear Dyn. 19, 167–186 (1998)CrossRef
31.
Zurück zum Zitat Vielsack, P., Spiess, H.: Sliding of a mass on an inclined driven plane with randomly varying coefficient of friction. J. Appl. Mech. 67, 112–116 (2000)CrossRef Vielsack, P., Spiess, H.: Sliding of a mass on an inclined driven plane with randomly varying coefficient of friction. J. Appl. Mech. 67, 112–116 (2000)CrossRef
32.
Zurück zum Zitat Long, Y.G., Nagaya, K., Niwa, H.: Vibration conveyance in spatial-curved tubes. J. Vib. Acoust. 116, 38–46 (1994)CrossRef Long, Y.G., Nagaya, K., Niwa, H.: Vibration conveyance in spatial-curved tubes. J. Vib. Acoust. 116, 38–46 (1994)CrossRef
33.
Zurück zum Zitat Biwersi, S., Manceau, J.-F., Bastien, F.: Displacement of droplets and deformation of thin liquid layers using flexural vibrations of structures. influence of acoustic radiation pressure. J. Acoust. Soc. Am. 107, 661–664 (2000) Biwersi, S., Manceau, J.-F., Bastien, F.: Displacement of droplets and deformation of thin liquid layers using flexural vibrations of structures. influence of acoustic radiation pressure. J. Acoust. Soc. Am. 107, 661–664 (2000)
34.
Zurück zum Zitat Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J., Guttenberg, Z.V.: Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379, 982–991 (2004)CrossRef Wixforth, A., Strobl, C., Gauer, C., Toegl, A., Scriba, J., Guttenberg, Z.V.: Acoustic manipulation of small droplets. Anal. Bioanal. Chem. 379, 982–991 (2004)CrossRef
35.
Zurück zum Zitat Alzuaga, S., Manceau, J.-F., Bastien, F.: Motion of droplets on solid surface using acoustic radiation pressure. J. Sound Vib. 282, 151–162 (2005)CrossRef Alzuaga, S., Manceau, J.-F., Bastien, F.: Motion of droplets on solid surface using acoustic radiation pressure. J. Sound Vib. 282, 151–162 (2005)CrossRef
36.
Zurück zum Zitat Bennes, J., Alzuaga, S., Chabe, P., Morain, G., Cheroux, F, Manceau, J.-F., Bastien, F.: Action of low frequency vibration on liquid droplets and particles. Ultrasonics 44, 497–502 (2004)CrossRef Bennes, J., Alzuaga, S., Chabe, P., Morain, G., Cheroux, F, Manceau, J.-F., Bastien, F.: Action of low frequency vibration on liquid droplets and particles. Ultrasonics 44, 497–502 (2004)CrossRef
37.
Zurück zum Zitat Jiao, Z.J., Huang, X.Y., Nguyen, N.-T.: Scattering and attenuation of surface acoustic waves in droplet actuation. J. Phys. A Math. Theor. 41, 355502 (2008)CrossRef Jiao, Z.J., Huang, X.Y., Nguyen, N.-T.: Scattering and attenuation of surface acoustic waves in droplet actuation. J. Phys. A Math. Theor. 41, 355502 (2008)CrossRef
38.
Zurück zum Zitat Mele, E.J., Král, P.: Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 88, 056803 (2002)CrossRef Mele, E.J., Král, P.: Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 88, 056803 (2002)CrossRef
39.
Zurück zum Zitat Michalski, P.J., Sai, N.A., Mele, E.J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803 (2005)CrossRef Michalski, P.J., Sai, N.A., Mele, E.J.: Continuum theory for nanotube piezoelectricity. Phys. Rev. Lett. 95, 116803 (2005)CrossRef
40.
Zurück zum Zitat Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)CrossRef Král, P., Thanopulos, I., Shapiro, M.: Coherently controlled adiabatic passage. Rev. Mod. Phys. 79, 53–77 (2007)CrossRef
41.
Zurück zum Zitat Schneider, T., Stoll, E.: Molecular-dynamics study of three-dimensions one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)CrossRef Schneider, T., Stoll, E.: Molecular-dynamics study of three-dimensions one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)CrossRef
42.
Zurück zum Zitat Matsumoto, M., Kunisawa, T., Xiao, P.: Relaxation of phonons in classical MD simulation. J. Therm. Sci. Technol. 3, 159–166 (2008)CrossRef Matsumoto, M., Kunisawa, T., Xiao, P.: Relaxation of phonons in classical MD simulation. J. Therm. Sci. Technol. 3, 159–166 (2008)CrossRef
43.
Zurück zum Zitat Král, P.: Linearized quantum transport equations: AC conductance of a quantum wire with an electron-phonon interaction. Phys. Rev. B 53, 11034–11050 (1996)CrossRef Král, P.: Linearized quantum transport equations: AC conductance of a quantum wire with an electron-phonon interaction. Phys. Rev. B 53, 11034–11050 (1996)CrossRef
44.
Zurück zum Zitat Benumof, R.: Momentum propagation by traveling waves on a string. Am. J. Phys. 50, 20–25 (1982)CrossRef Benumof, R.: Momentum propagation by traveling waves on a string. Am. J. Phys. 50, 20–25 (1982)CrossRef
45.
Zurück zum Zitat Segal, D., Král, P., Shapiro, M.: Ultraslow phonon-assisted collapse of tubular image states. Surf. Sci. 577, 86–92 (2005)CrossRef Segal, D., Král, P., Shapiro, M.: Ultraslow phonon-assisted collapse of tubular image states. Surf. Sci. 577, 86–92 (2005)CrossRef
46.
Zurück zum Zitat Craighead, H.G.: Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006)CrossRef Craighead, H.G.: Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006)CrossRef
47.
Zurück zum Zitat Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRef Baughman, R.H., Cui, C.X., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRef
48.
Zurück zum Zitat Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., De Rossi, D., Khayrullin, I.I., Baughman, R.H., Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728–1732 (2002)CrossRef Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., De Rossi, D., Khayrullin, I.I., Baughman, R.H., Pneumatic carbon nanotube actuators. Adv. Mater. 14, 1728–1732 (2002)CrossRef
49.
Zurück zum Zitat Schoch, R.B., Han, J.Y., Renaud, P., Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)CrossRef Schoch, R.B., Han, J.Y., Renaud, P., Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)CrossRef
50.
Zurück zum Zitat Král, P., Shapiro, M.: Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131 (2001)CrossRef Král, P., Shapiro, M.: Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131 (2001)CrossRef
51.
Zurück zum Zitat Ghosh, S., Sood, A.K., Kumar, N.: Carbon nanotube flow sensors. Science 299, 1042 (2003). US Patent No. 6718834 B1 Ghosh, S., Sood, A.K., Kumar, N.: Carbon nanotube flow sensors. Science 299, 1042 (2003). US Patent No. 6718834 B1
52.
Zurück zum Zitat Sood, A.K., Ghosh, S.: Direct generation of a voltage and current by gas flow over carbon nanotubes and semiconductors. Phys. Rev. Lett. 93, 086601 (2004)CrossRef Sood, A.K., Ghosh, S.: Direct generation of a voltage and current by gas flow over carbon nanotubes and semiconductors. Phys. Rev. Lett. 93, 086601 (2004)CrossRef
53.
Zurück zum Zitat Subramaniam, C., Pradeep, T., Chakrabarti, J.: Flow-induced transverse electrical potential across an assembly of gold nanoparticles. Phys. Rev. Lett. 95, 164501 (2005)CrossRef Subramaniam, C., Pradeep, T., Chakrabarti, J.: Flow-induced transverse electrical potential across an assembly of gold nanoparticles. Phys. Rev. Lett. 95, 164501 (2005)CrossRef
54.
Zurück zum Zitat Bourlon, B., Wong, J., Miko, C., Forro, L., Bockrath, M.: A nanoscale probe for fluidic and ionic transport. Nat. Nanotech. 2, 104 (2006)CrossRef Bourlon, B., Wong, J., Miko, C., Forro, L., Bockrath, M.: A nanoscale probe for fluidic and ionic transport. Nat. Nanotech. 2, 104 (2006)CrossRef
55.
Zurück zum Zitat Fu, J.P., Schoch, R.B., Stevens, A.L., Tannenbaum, S.R., Han, J.Y.: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotech. 2, 121 (2007)CrossRef Fu, J.P., Schoch, R.B., Stevens, A.L., Tannenbaum, S.R., Han, J.Y.: A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotech. 2, 121 (2007)CrossRef
56.
Zurück zum Zitat Linke, H., et al.: Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006)CrossRef Linke, H., et al.: Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006)CrossRef
57.
Zurück zum Zitat Akin, D., et al.: Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotech. 2, 441–449 (2007)CrossRef Akin, D., et al.: Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotech. 2, 441–449 (2007)CrossRef
58.
Zurück zum Zitat Hitoshi, O., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157 (1993)CrossRef Hitoshi, O., Radnai, T.: Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157 (1993)CrossRef
59.
Zurück zum Zitat Cabria, I., Mintmire, J.W., White, C.T.: Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B 67, 121406(R) (2003) Cabria, I., Mintmire, J.W., White, C.T.: Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B 67, 121406(R) (2003)
60.
Zurück zum Zitat Blasé, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335 (1994)CrossRef Blasé, X., Rubio, A., Louie, S.G., Cohen, M.L.: Stability and band gap constancy of boron nitride nanotubes. Europhys. Lett. 28, 335 (1994)CrossRef
61.
Zurück zum Zitat McHale, G., Newton, M.I., Carroll, B.J.: The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. Rev. IFP 56, 47 (2006)CrossRef McHale, G., Newton, M.I., Carroll, B.J.: The shape and stability of small liquid drops on fibers. Oil Gas Sci. Technol. Rev. IFP 56, 47 (2006)CrossRef
62.
Zurück zum Zitat Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRef Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRef
64.
Zurück zum Zitat Kim, H.Y., Lee, H.J., Kang, B.H.: Sliding of liquid drops down an inclined solid surface. J. Coll. Int. Sci. 247, 372 (2002)CrossRef Kim, H.Y., Lee, H.J., Kang, B.H.: Sliding of liquid drops down an inclined solid surface. J. Coll. Int. Sci. 247, 372 (2002)CrossRef
65.
Zurück zum Zitat Mahadevan, L., Pomeau, Y.: Rolling droplets. Phys. Fluids 11, 2449 (1999)CrossRef Mahadevan, L., Pomeau, Y.: Rolling droplets. Phys. Fluids 11, 2449 (1999)CrossRef
66.
Zurück zum Zitat Brancker, A.V.: Viscosity-temperature dependence. Nature 166, 905 (1950) Brancker, A.V.: Viscosity-temperature dependence. Nature 166, 905 (1950)
67.
Zurück zum Zitat Vergeles, M., Keblinski, P., Koplik, J., Banavar, J.R.: Stokes drag and lubrication flows: a molecular dynamics study. Phys. Rev. E 53, 4852 (1996)CrossRef Vergeles, M., Keblinski, P., Koplik, J., Banavar, J.R.: Stokes drag and lubrication flows: a molecular dynamics study. Phys. Rev. E 53, 4852 (1996)CrossRef
68.
Zurück zum Zitat Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)CrossRef Squires, T.M., Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77, 977 (2005)CrossRef
69.
Zurück zum Zitat Mills, D.L.: Image force on a moving charge. Phys. Rev. B 15, 763 (1977)CrossRef Mills, D.L.: Image force on a moving charge. Phys. Rev. B 15, 763 (1977)CrossRef
70.
Zurück zum Zitat Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311, 832 (2006)CrossRef Laage, D., Hynes, J.T.: A molecular jump mechanism of water reorientation. Science 311, 832 (2006)CrossRef
71.
Zurück zum Zitat Král, P., Jauho, A.P.: Resonant tunneling in a pulsed phonon field. Phys. Rev. B 59, 7656 (1999)CrossRef Král, P., Jauho, A.P.: Resonant tunneling in a pulsed phonon field. Phys. Rev. B 59, 7656 (1999)CrossRef
72.
Zurück zum Zitat Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S.: Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002)CrossRef Skoulidas, A.I., Ackerman, D.M., Johnson, J.K., Sholl, D.S.: Rapid transport of gases in carbon nanotubes. Phys. Rev. Lett. 89, 185901 (2002)CrossRef
73.
Zurück zum Zitat Holt, J.K., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006)CrossRef Holt, J.K., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034 (2006)CrossRef
74.
Zurück zum Zitat Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 483, 44 (2005)CrossRef Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 483, 44 (2005)CrossRef
75.
Zurück zum Zitat Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7, 697 (2007)CrossRef Wang, Z., Ci, L., Chen, L., Nayak, S., Ajayan, P.M., Koratkar, N.: Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7, 697 (2007)CrossRef
76.
Zurück zum Zitat Zhou, J.J., Noca, F., Gharib, M.: Flow conveying and diagnosis with carbon nanotube arrays. Nanotechnology 17, 4845 (2006)CrossRef Zhou, J.J., Noca, F., Gharib, M.: Flow conveying and diagnosis with carbon nanotube arrays. Nanotechnology 17, 4845 (2006)CrossRef
77.
Zurück zum Zitat Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87 (2007)CrossRef Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87 (2007)CrossRef
78.
Zurück zum Zitat Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
79.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
80.
Zurück zum Zitat Berner, S., Corso, M., Widmer, R., Groening, O., Laskowski, R., Blaha, P., Schwarz, K., Goriachko, A., Over, H., Gsell, S., Schreck, M., Sachdev, H., Greber, T., Osterwalder, J.: Boron nitride nanomesh: functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007)CrossRef Berner, S., Corso, M., Widmer, R., Groening, O., Laskowski, R., Blaha, P., Schwarz, K., Goriachko, A., Over, H., Gsell, S., Schreck, M., Sachdev, H., Greber, T., Osterwalder, J.: Boron nitride nanomesh: functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007)CrossRef
81.
Zurück zum Zitat Laskowski, R., Blaha, P., Gallauner, T., Schwarz, K.: Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 98, 106802 (2007)CrossRef Laskowski, R., Blaha, P., Gallauner, T., Schwarz, K.: Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 98, 106802 (2007)CrossRef
82.
Zurück zum Zitat Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)CrossRef Li, X., Wang, X., Zhang, L., Lee, S., Dai, H.: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008)CrossRef
83.
Zurück zum Zitat Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRef Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009)CrossRef
84.
Zurück zum Zitat Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M.: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009)CrossRef
85.
Zurück zum Zitat Tapasztó, L., Dobrik, G., Lambin, P., Biró, L.P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008)CrossRef Tapasztó, L., Dobrik, G., Lambin, P., Biró, L.P.: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008)CrossRef
86.
Zurück zum Zitat Stampfer, C., Guttinger, J., Hellmuller, S., Molitor, F., Ensslin, K., Ihn, T.: Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009)CrossRef Stampfer, C., Guttinger, J., Hellmuller, S., Molitor, F., Ensslin, K., Ihn, T.: Energy gaps in etched graphene nanoribbons. Phys. Rev. Lett. 102, 056403 (2009)CrossRef
87.
Zurück zum Zitat Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Kelly, K.F., Yakobson, B.I., Ajayan, P.M.: Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008)CrossRef Ci, L., Xu, Z., Wang, L., Gao, W., Ding, F., Kelly, K.F., Yakobson, B.I., Ajayan, P.M.: Controlled nanocutting of graphene. Nano Res. 1, 116–122 (2008)CrossRef
88.
Zurück zum Zitat Campos, L.C., Manfrinato, R.V., Sanchez-Yamagishi, J.D., Kong, J., Jarillo-Herrero, P.: Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009)CrossRef Campos, L.C., Manfrinato, R.V., Sanchez-Yamagishi, J.D., Kong, J., Jarillo-Herrero, P.: Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 9, 2600–2604 (2009)CrossRef
89.
Zurück zum Zitat Zhu, Z.P., Su, D.S., Weinberg, G., Schlogl, R.: Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4, 2255–2259 (2004)CrossRef Zhu, Z.P., Su, D.S., Weinberg, G., Schlogl, R.: Supermolecular self-assembly of graphene sheets: formation of tube-in-tube nanostructures. Nano Lett. 4, 2255–2259 (2004)CrossRef
90.
Zurück zum Zitat Jin, W., Fukushima, T., Niki, M., Kosaka, A., Ishii, N., Aida, T.: Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc. Natl. Acad. Sci. USA 102, 10801–10806 (2005)CrossRef Jin, W., Fukushima, T., Niki, M., Kosaka, A., Ishii, N., Aida, T.: Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. Proc. Natl. Acad. Sci. USA 102, 10801–10806 (2005)CrossRef
91.
Zurück zum Zitat Chen, Q., Chen, T., Pan, G.-B., Yan, H.-J., Song, W.-G., Wan, L.-J., Li, Z.-T., Wang, Z.-H., Shang, B., Yuan, L.-F., Yang, J.-L.: Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain. Proc. Natl. Acad. Sci. USA 105, 16849–16854 (2008)CrossRef Chen, Q., Chen, T., Pan, G.-B., Yan, H.-J., Song, W.-G., Wan, L.-J., Li, Z.-T., Wang, Z.-H., Shang, B., Yuan, L.-F., Yang, J.-L.: Structural selection of graphene supramolecular assembly oriented by molecular conformation and alkyl chain. Proc. Natl. Acad. Sci. USA 105, 16849–16854 (2008)CrossRef
92.
Zurück zum Zitat Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRef
93.
Zurück zum Zitat Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)CrossRef Bunch, J.S., Verbridge, S.S., Alden, J.S., van der Zande, A.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008)CrossRef
94.
Zurück zum Zitat Gómez-Navarro, C., Burghard, M., Kern, K.: Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008)CrossRef Gómez-Navarro, C., Burghard, M., Kern, K.: Elastic properties of chemically derived single graphene sheets. Nano Lett. 8, 2045–2049 (2008)CrossRef
95.
Zurück zum Zitat Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRef Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRef
96.
Zurück zum Zitat Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galvao, D.S., Baughman, R.H.: Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)CrossRef Braga, S.F., Coluci, V.R., Legoas, S.B., Giro, R., Galvao, D.S., Baughman, R.H.: Structure and dynamics of carbon nanoscrolls. Nano Lett. 4, 881–884 (2004)CrossRef
97.
Zurück zum Zitat Yu, D., Liu, F.: Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7, 3046–3050 (2007)CrossRef Yu, D., Liu, F.: Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 7, 3046–3050 (2007)CrossRef
98.
Zurück zum Zitat Sidorov, A., Mudd, D., Sumanasekera, G, Ouseph, P.J., Jayanthi, C.S., Wu, S.-Y.: Electrostatic deposition of graphene in a gaseous environment: a deterministic route for synthesizing rolled graphenes? Nanotechnology 20, 055611 (2009)CrossRef Sidorov, A., Mudd, D., Sumanasekera, G, Ouseph, P.J., Jayanthi, C.S., Wu, S.-Y.: Electrostatic deposition of graphene in a gaseous environment: a deterministic route for synthesizing rolled graphenes? Nanotechnology 20, 055611 (2009)CrossRef
99.
Zurück zum Zitat Martel, R., Shea, R.H., Avouris, P.: Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 103, 7551–7556 (1999)CrossRef Martel, R., Shea, R.H., Avouris, P.: Ring formation in single-wall carbon nanotubes. J. Phys. Chem. B 103, 7551–7556 (1999)CrossRef
100.
Zurück zum Zitat Huang, J., Juszkiewicz, M., de Jeu, W.H., Cerda, E., Emrick, T., Menon, N., Russell, T.P.: Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2007)CrossRef Huang, J., Juszkiewicz, M., de Jeu, W.H., Cerda, E., Emrick, T., Menon, N., Russell, T.P.: Capillary wrinkling of floating thin polymer films. Science 317, 650–653 (2007)CrossRef
101.
Zurück zum Zitat Py, C., Reverdy, P., Doppler, L., Bico, J., Roman B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007)CrossRef Py, C., Reverdy, P., Doppler, L., Bico, J., Roman B., Baroud, C.N.: Capillary origami: spontaneous wrapping of a droplet with an elastic sheet. Phys. Rev. Lett. 98, 156103 (2007)CrossRef
102.
Zurück zum Zitat Ellis, R.J., Vandervies, S.M.: Molecular chaperones. Annu. Rev. Biochem. 60, 321–347 (1991)CrossRef Ellis, R.J., Vandervies, S.M.: Molecular chaperones. Annu. Rev. Biochem. 60, 321–347 (1991)CrossRef
103.
Zurück zum Zitat Juniper, B.E., Robins, R.J., Joel, D.M.: The Carnivorous Plants. Academic, London (1989). ISBN 0-1239-2170-8 Juniper, B.E., Robins, R.J., Joel, D.M.: The Carnivorous Plants. Academic, London (1989). ISBN 0-1239-2170-8
104.
Zurück zum Zitat Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)CrossRef Lee, K.B., Park, S.J., Mirkin, C.A., Smith, J.C., Mrksich, M.: Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002)CrossRef
105.
Zurück zum Zitat Duwez, A.-S., Cuenot, S., Jér̂ome, C., Gabriel, S., Jér̂ome, R., Rapino, S., Zerbetto, F.: Mechanochemistry: targeted delivery of single molecules. Nat. Nanotechnol. 1, 122–125 (2006) Duwez, A.-S., Cuenot, S., Jér̂ome, C., Gabriel, S., Jér̂ome, R., Rapino, S., Zerbetto, F.: Mechanochemistry: targeted delivery of single molecules. Nat. Nanotechnol. 1, 122–125 (2006)
106.
Zurück zum Zitat Walther, J.H., Werder, T., Jaffe, R.L., Gonnet, P., Bergdorf, M., Zimmerli, U., Koumoutsakos, P.: Water–carbon interactions III: the influence of surface and fluid impurities. Phys. Chem. Chem. Phys. 6, 1988–1995 (2004)CrossRef Walther, J.H., Werder, T., Jaffe, R.L., Gonnet, P., Bergdorf, M., Zimmerli, U., Koumoutsakos, P.: Water–carbon interactions III: the influence of surface and fluid impurities. Phys. Chem. Chem. Phys. 6, 1988–1995 (2004)CrossRef
Metadaten
Titel
Water Nanodroplets: Molecular Drag and Self-assembly
verfasst von
J. Russell
B. Wang
N. Patra
P. Král
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-9472-0_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.