Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 3/2013

01.03.2013 | Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Water Penetration—Its Effect on the Strength and Toughness of Silica Glass

verfasst von: Sheldon M. Wiederhorn, Theo Fett, Gabriele Rizzi, Michael J. Hoffmann, Jean-Pierre Guin

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When a crack forms in silica glass, the surrounding environment flows into the crack opening, and water from the environment reacts with the glass to promote crack growth. A chemical reaction between water and the strained crack-tip bonds is commonly regarded as the cause of subcritical crack growth in glass. In silica glass, water can also have a secondary effect on crack growth. By penetrating into the glass, water generates a zone of swelling and, hence, creates a compression zone around the crack tip and on the newly formed fracture surfaces. This zone of compression acts as a fracture mechanics shield to the stresses at the crack tip, modifying both the strength and subcritical crack growth resistance of the glass. Water penetration is especially apparent in silica glass because of its low density and the fact that it contains no modifier ions. Using diffusion data from the literature, we show that the diffusion of water into silica glass can explain several significant experimental observations that have been reported on silica glass, including (1) the strengthening of silica glass by soaking the glass in water at elevated temperatures, (2) the observation of permanent crack face displacements near the crack tip of a silica specimen that had been soaked in water under load, and (3) the observation of high concentrations of water close to the fracture surfaces that had been formed in water. These effects are consistent with a model suggesting that crack growth in silica glass is modified by a physical swelling of the glass around the crack tip. An implication of water-induced swelling during fracture is that silica glass is more resistant to crack growth than it would be if swelling did not occur.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The use of commercial names is for identification only and does not imply endorsement by the National Institute of Standards and Technology.
 
2
Vycor glass contains about 96 pct SiO2, 3 pct B2O3 and 1 pct Al2O3 by weight.
 
3
The effect of back stresses on the swelling volume is not considered. See Reference 23 for a discussion of this point.
 
Literatur
1.
Zurück zum Zitat D.W. Richerson: The Magic of Ceramics, The American Ceramic Society, Westerville, OH, 2000. D.W. Richerson: The Magic of Ceramics, The American Ceramic Society, Westerville, OH, 2000.
2.
Zurück zum Zitat A.K. Varshneya: Fundamentals of Inorganic Glasses, Academic Press, Inc., Harcourt Brace & Company, Publishers, San Diego, CA, 1994. A.K. Varshneya: Fundamentals of Inorganic Glasses, Academic Press, Inc., Harcourt Brace & Company, Publishers, San Diego, CA, 1994.
3.
Zurück zum Zitat S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky: J. Am. Ceram. Soc., 2009, vol. 92, no. 7, pp. 1371–82.CrossRef S.W. Freiman, S.M. Wiederhorn, and J.J. Mecholsky: J. Am. Ceram. Soc., 2009, vol. 92, no. 7, pp. 1371–82.CrossRef
4.
5.
Zurück zum Zitat B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, U.K., 1993. B.R. Lawn: Fracture of Brittle Solids, 2nd ed., Cambridge University Press, Cambridge, U.K., 1993.
6.
Zurück zum Zitat C.R. Kurkjian, P.K. Gupta, R.K. Brow, and N. Lower: J. Noncryst. Solids, 2003, vol. 316, pp. 114–24.CrossRef C.R. Kurkjian, P.K. Gupta, R.K. Brow, and N. Lower: J. Noncryst. Solids, 2003, vol. 316, pp. 114–24.CrossRef
7.
Zurück zum Zitat L. Pauling: The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960. L. Pauling: The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY, 1960.
8.
Zurück zum Zitat R.M. McMeeking and A.G. Evans: J. Am. Ceram. Soc., 1982, vol. 65, pp. 242–46.CrossRef R.M. McMeeking and A.G. Evans: J. Am. Ceram. Soc., 1982, vol. 65, pp. 242–46.CrossRef
9.
Zurück zum Zitat J.E. Shelby: J. Non-Cryst., 2004, no. 349, pp. 331–36. J.E. Shelby: J. Non-Cryst., 2004, no. 349, pp. 331–36.
10.
Zurück zum Zitat R. Bruckner: Glastech. Ber., 1970, vol. 43, pp. 8–12. R. Bruckner: Glastech. Ber., 1970, vol. 43, pp. 8–12.
11.
12.
Zurück zum Zitat J.F. Shackelford, J.S. Masaryk, and R.M. Fulrath: J. Am. Ceram. Soc., 1970, vol. 53, p. 417.CrossRef J.F. Shackelford, J.S. Masaryk, and R.M. Fulrath: J. Am. Ceram. Soc., 1970, vol. 53, p. 417.CrossRef
13.
Zurück zum Zitat M. Tomozawa, W.-T. Han, and W.A. Lanford: J. Am. Ceram. Soc., 1991, vol. 74, no. 10, pp. 2573–76.CrossRef M. Tomozawa, W.-T. Han, and W.A. Lanford: J. Am. Ceram. Soc., 1991, vol. 74, no. 10, pp. 2573–76.CrossRef
14.
Zurück zum Zitat F. Lechenault, D.L. Rountree, F. Cousin, J.-P Bouchaud, L. Ponson, and E. Bouchaud: Phys. Rev. Lett., 2011, vol. 106, p. 165504.CrossRef F. Lechenault, D.L. Rountree, F. Cousin, J.-P Bouchaud, L. Ponson, and E. Bouchaud: Phys. Rev. Lett., 2011, vol. 106, p. 165504.CrossRef
15.
Zurück zum Zitat C. Janssen: Proceedings of Tenth International Congress on Glass, Kyoto, Japan 1974, Ceramic Society of Japan, Tokyo, Japan, 1974, pp. 10–23. C. Janssen: Proceedings of Tenth International Congress on Glass, Kyoto, Japan 1974, Ceramic Society of Japan, Tokyo, Japan, 1974, pp. 10–23.
16.
Zurück zum Zitat T.A. Michalske, W.L. Smith, and E.P. Chen: Eng. Fract. Mech., 1993, vol. 45, pp. 637–42.CrossRef T.A. Michalske, W.L. Smith, and E.P. Chen: Eng. Fract. Mech., 1993, vol. 45, pp. 637–42.CrossRef
17.
Zurück zum Zitat M.Y. He, M.R. Turner, and A.G. Evans: Acta Metall. Mater., 1995, vol. 43, pp. 3453–58.CrossRef M.Y. He, M.R. Turner, and A.G. Evans: Acta Metall. Mater., 1995, vol. 43, pp. 3453–58.CrossRef
18.
Zurück zum Zitat A. Zouine, O. Dersch, G. Walter, and F. Rauch: Phys. Chem. Glasses, 2007, vol. 48, pp. 85–91. A. Zouine, O. Dersch, G. Walter, and F. Rauch: Phys. Chem. Glasses, 2007, vol. 48, pp. 85–91.
19.
Zurück zum Zitat S. Ito and M. Tomozawa: J. Am. Ceram. Soc., 1982, vol. 65, no. 8, pp. 368–71.CrossRef S. Ito and M. Tomozawa: J. Am. Ceram. Soc., 1982, vol. 65, no. 8, pp. 368–71.CrossRef
20.
Zurück zum Zitat K. Hirao and M. Tomozawa: J. Am. Ceram. Soc., 1987, vol. 70, no. 6, pp. 377–82.CrossRef K. Hirao and M. Tomozawa: J. Am. Ceram. Soc., 1987, vol. 70, no. 6, pp. 377–82.CrossRef
21.
Zurück zum Zitat S.M. Wiederhorn, T. Fett, G. Rizzi, M.J. Hoffmann, and J.-P. Guin: Eng. Fract. Mech., 2012, in press. S.M. Wiederhorn, T. Fett, G. Rizzi, M.J. Hoffmann, and J.-P. Guin: Eng. Fract. Mech., 2012, in press.
22.
Zurück zum Zitat S.M. Wiederhorn: J. Am. Ceram. Soc., 1969, vol. 52, no. 2, pp. 99–105.CrossRef S.M. Wiederhorn: J. Am. Ceram. Soc., 1969, vol. 52, no. 2, pp. 99–105.CrossRef
23.
Zurück zum Zitat S.M. Wiederhorn, T. Fett, G. Rizzi, S. Fünfschilling, M.J. Hoffmann, and J.-P. Guin: J. Am. Ceram. Soc., 2011, vol. 94, no. S1, pp. S196–S203.CrossRef S.M. Wiederhorn, T. Fett, G. Rizzi, S. Fünfschilling, M.J. Hoffmann, and J.-P. Guin: J. Am. Ceram. Soc., 2011, vol. 94, no. S1, pp. S196–S203.CrossRef
24.
Zurück zum Zitat Mathematica: Wolfram Research, Champaign, IL. Mathematica: Wolfram Research, Champaign, IL.
25.
26.
Zurück zum Zitat S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons: J. Mater. Sci., 1982, vol. 17, pp. 3460–78. S.M. Wiederhorn, S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons: J. Mater. Sci., 1982, vol. 17, pp. 3460–78.
27.
Zurück zum Zitat S.M. Wiederhorn, E.R. Fuller, Jr., and R. Thomson: Met. Sci., 1980, vol. 14, pp. 450–8. S.M. Wiederhorn, E.R. Fuller, Jr., and R. Thomson: Met. Sci., 1980, vol. 14, pp. 450–8.
28.
29.
Zurück zum Zitat S.M. Wiederhorn and L.H.Bolz: J. Am. Ceram. Soc., 1970, vol. 53, no. 10, pp. 543–48.CrossRef S.M. Wiederhorn and L.H.Bolz: J. Am. Ceram. Soc., 1970, vol. 53, no. 10, pp. 543–48.CrossRef
30.
Zurück zum Zitat G.W. Weidmann and D.G. Holloway: Phys. Chem. Glasses, 1974, vol. 15, pp. 68–75. G.W. Weidmann and D.G. Holloway: Phys. Chem. Glasses, 1974, vol. 15, pp. 68–75.
31.
Zurück zum Zitat D.H. Roach, S. Lathabai, and B.R. Lawn: J. Am. Ceram. Soc., 1988, vol. 71, no. 2, pp. 97–105.CrossRef D.H. Roach, S. Lathabai, and B.R. Lawn: J. Am. Ceram. Soc., 1988, vol. 71, no. 2, pp. 97–105.CrossRef
32.
Zurück zum Zitat T. Fett and D. Munz: Stress Intensity Factors and Weight Functions, Computational Mechanics Publications, Southampton, U.K., 1997. T. Fett and D. Munz: Stress Intensity Factors and Weight Functions, Computational Mechanics Publications, Southampton, U.K., 1997.
Metadaten
Titel
Water Penetration—Its Effect on the Strength and Toughness of Silica Glass
verfasst von
Sheldon M. Wiederhorn
Theo Fett
Gabriele Rizzi
Michael J. Hoffmann
Jean-Pierre Guin
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 3/2013
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1333-z

Weitere Artikel der Ausgabe 3/2013

Metallurgical and Materials Transactions A 3/2013 Zur Ausgabe

Symposium: Environmental Damage in Structural Materials under Static/Dynamic Loads at Ambient Temperature

Fatigue Crack Growth under High Pressure of Gaseous Hydrogen in a 15-5PH Martensitic Stainless Steel: Influence of Pressure and Loading Frequency

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.