Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

27.05.2019 | Ausgabe 8/2019

Water Resources Management 8/2019

Water Resources Allocation in Transboundary River Basins Based on a Game Model Considering Inflow Forecasting Errors

Zeitschrift:
Water Resources Management > Ausgabe 8/2019
Autoren:
Jisi Fu, Ping-an Zhong, Juan Chen, Bin Xu, Feilin Zhu, Yu Zhang
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Dynamic transboundary water resources allocation based on inflow prediction results is an important task for water resources management in river basins. This paper takes the watershed management agency as the leader and the associated area as the follower, and proposes a two-level asymmetric Nash-Harsanyi Leader-Follower game model considering inflow forecasting errors. In the proposed model, the Monte Carlo method is used to analyze the uncertainty of various stakeholder allocation results and the response regularity to the total water resource uncertainty. The quantitative relationship between the allocation results of stakeholders and the mean and standard deviation of total water resource uncertainty is subsequently established. The Huaihe River basin in China is selected as a case study. The results show the following: (1) the water allocated to the watershed management agency and three provinces has a normal distribution when the inflow forecasting error obeys the normal distribution; (2) the sum of the mean of the water allocated to stakeholders equals the mean of the forecast water resource and the sum of the standard deviations of the water allocated to stakeholders equals the standard deviation of the forecast water resource; (3) the mean and standard deviation of the allocation results have a good linear relationship with the mean and standard deviation of forecast water resource; (4) the distribution parameters of the stakeholder allocation results can be directly derived from the distribution parameters of the forecast information, thus aiding the stakeholders in making decisions and improving the practical value of the method.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2019

Water Resources Management 8/2019 Zur Ausgabe