Skip to main content
Erschienen in: Meccanica 1-2/2019

17.11.2018

Wave equation in fractional Zener-type viscoelastic media involving Caputo–Fabrizio fractional derivatives

verfasst von: Teodor M. Atanacković, Marko Janev, Stevan Pilipović

Erschienen in: Meccanica | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate propagation of waves in the Zener-type viscoelastic media through a model which involves fractional derivatives with a regular kernel. The restrictions on the coefficients in the constitutive equation that follow from the weak form of the dissipation principle are obtained. We formulate a problem of motion of a spatially one dimensional continuum in a dimensionless form. Then, it is considered in the frame of distribution theory. The existence and the uniqueness of a distributional solution as well as the analysis of its regularity are presented. Numerical results provide the illustration of our approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Recall that \(AC([0,\infty ))\) consists of continuous functions y having locally integrable derivatives (\(dy/dt=y^{(1)}\in L^1_{loc}([0,\infty )).\)
 
2
Since \(\sigma =\varSigma +\varepsilon\), with (19), the stress strain relation (1) becomes
$$\begin{aligned} \sigma (x,t)=\int _{-\infty }^{\infty }{\mathcal {F}}^{-1}\left[ \varPhi \left( \omega \right) \right] \left( t-\tau \right) \frac{\partial \varepsilon \left( x,\tau \right) }{\partial \tau }d\tau +\varepsilon (x,t), \end{aligned}$$
which shows nonlocality of constitutive equation (1) with fractional derivative (3).
 
3
We note that our definition of the Laplace transform differs from the one in [29] up to the rotation with the angle \(\pi /2\).
 
Literatur
1.
Zurück zum Zitat Atanackovic TM, Pilipovic S, Zorica D (2018) Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract Calc Appl Anal 21:29–44MathSciNetCrossRefMATH Atanackovic TM, Pilipovic S, Zorica D (2018) Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract Calc Appl Anal 21:29–44MathSciNetCrossRefMATH
2.
Zurück zum Zitat Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155ADSCrossRefMATH Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155ADSCrossRefMATH
5.
Zurück zum Zitat Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular Kernel. Prog Fract Differ Appl 1(2):73–85 Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular Kernel. Prog Fract Differ Appl 1(2):73–85
6.
Zurück zum Zitat Caputo M, Fabrizio M (2015) Properties of a new fractional derivative without singular Kernel. Progr Fract Differ Appl 1(2):87–92 Caputo M, Fabrizio M (2015) Properties of a new fractional derivative without singular Kernel. Progr Fract Differ Appl 1(2):87–92
9.
Zurück zum Zitat El-Karamany AS, Ezzat MA (2015) Two-temperature Green–Naghdi theory of type III in linear thermoviscoelastic anisotropic solid. Appl Math Modell 39:2155–2171MathSciNetCrossRef El-Karamany AS, Ezzat MA (2015) Two-temperature Green–Naghdi theory of type III in linear thermoviscoelastic anisotropic solid. Appl Math Modell 39:2155–2171MathSciNetCrossRef
10.
Zurück zum Zitat El-Karamany AS, Ezzat MA (2011) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stresses 34:264–284CrossRef El-Karamany AS, Ezzat MA (2011) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stresses 34:264–284CrossRef
11.
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, New YorkMATH
12.
Zurück zum Zitat Enelund M, Mähler L, Runesson K, Lennart Josefson B (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRefMATH Enelund M, Mähler L, Runesson K, Lennart Josefson B (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRefMATH
13.
Zurück zum Zitat Ezzat MA, El-Bary AA (2016) Unified fractional derivative models of magneto-thermo-viscoelasticity theory. Arch Mech 68:285–308MathSciNetMATH Ezzat MA, El-Bary AA (2016) Unified fractional derivative models of magneto-thermo-viscoelasticity theory. Arch Mech 68:285–308MathSciNetMATH
14.
Zurück zum Zitat Fabrizio M, Lazzari B, Nibbi R (2017) Existence and stability for a visco-plastic material with a fractional constitutive equation. Math Meth Appl Sci 40:6306–6315MathSciNetCrossRefMATH Fabrizio M, Lazzari B, Nibbi R (2017) Existence and stability for a visco-plastic material with a fractional constitutive equation. Math Meth Appl Sci 40:6306–6315MathSciNetCrossRefMATH
15.
Zurück zum Zitat Fernndez-Saez J, Zaeraa R, Loya JA, Reddy JN (2016) Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116MathSciNetCrossRefMATH Fernndez-Saez J, Zaeraa R, Loya JA, Reddy JN (2016) Bending of Euler–Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int J Eng Sci 99:107–116MathSciNetCrossRefMATH
16.
Zurück zum Zitat Hristov J (2017) Derivatives with non-singular Kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front Fract Calc 1:270–342 Hristov J (2017) Derivatives with non-singular Kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. Front Fract Calc 1:270–342
17.
Zurück zum Zitat Kochubei AN (2011) General fractional calculus, evolution equations, and renewal processes. Integr Equ Oper Theory 71:583–600MathSciNetCrossRefMATH Kochubei AN (2011) General fractional calculus, evolution equations, and renewal processes. Integr Equ Oper Theory 71:583–600MathSciNetCrossRefMATH
18.
Zurück zum Zitat Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press-World Scientific, LondonCrossRefMATH Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press-World Scientific, LondonCrossRefMATH
19.
Zurück zum Zitat Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J Spec Top 193:133–160CrossRef Mainardi F, Spada G (2011) Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur Phys J Spec Top 193:133–160CrossRef
21.
Zurück zum Zitat Ortigueira MD, Tenreiro Machado JA (2018) A critical analysis of the Caputo–Fabrizio operator. Commun Nonlinear Sci Numer Simul 59:608–611ADSMathSciNetCrossRef Ortigueira MD, Tenreiro Machado JA (2018) A critical analysis of the Caputo–Fabrizio operator. Commun Nonlinear Sci Numer Simul 59:608–611ADSMathSciNetCrossRef
22.
Zurück zum Zitat Pallu De LA Barriere R (1980) Optimal control theory: a course in automatic control theory. Dower Publications Inc, New YorkMATH Pallu De LA Barriere R (1980) Optimal control theory: a course in automatic control theory. Dower Publications Inc, New YorkMATH
23.
Zurück zum Zitat Reed M, Simon B (1980) Methods of modern mathematical physics, I: functional anaalysis. Academic Press, New York Reed M, Simon B (1980) Methods of modern mathematical physics, I: functional anaalysis. Academic Press, New York
24.
Zurück zum Zitat Ross B (1975) A brief history and exposition of the fundamental theory of fractional calculus. In: Ross B (ed) Fractional calculus and its applications. Lecture notes in mathematics. Springer, Berlin, pp 1–36CrossRef Ross B (1975) A brief history and exposition of the fundamental theory of fractional calculus. In: Ross B (ed) Fractional calculus and its applications. Lecture notes in mathematics. Springer, Berlin, pp 1–36CrossRef
25.
Zurück zum Zitat Sherief HH, El-Sayed AMA, Abd El-Latief AM (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275CrossRefMATH Sherief HH, El-Sayed AMA, Abd El-Latief AM (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275CrossRefMATH
26.
Zurück zum Zitat Stankovic B, Atanackovic TM (2004) On an inequality arising in fractional oscillator theory. Fract Calc Appl Anal 7:11–20MathSciNetMATH Stankovic B, Atanackovic TM (2004) On an inequality arising in fractional oscillator theory. Fract Calc Appl Anal 7:11–20MathSciNetMATH
28.
Zurück zum Zitat Vladimirov VS (1979) Generalized functions in mathematical physics. Mir Publishers, MoscowMATH Vladimirov VS (1979) Generalized functions in mathematical physics. Mir Publishers, MoscowMATH
29.
Zurück zum Zitat von Ende S, Lion A, Lammering L (2011) On the thermodynamically consistent fractional wave equation for viscoelastic solids. Acta Mech 221:1–10CrossRefMATH von Ende S, Lion A, Lammering L (2011) On the thermodynamically consistent fractional wave equation for viscoelastic solids. Acta Mech 221:1–10CrossRefMATH
Metadaten
Titel
Wave equation in fractional Zener-type viscoelastic media involving Caputo–Fabrizio fractional derivatives
verfasst von
Teodor M. Atanacković
Marko Janev
Stevan Pilipović
Publikationsdatum
17.11.2018
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1-2/2019
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-018-0920-5

Weitere Artikel der Ausgabe 1-2/2019

Meccanica 1-2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.