Skip to main content

2016 | OriginalPaper | Buchkapitel

5. Weakly Nonlocal and Nonlinear Heat Transport

verfasst von : Antonio Sellitto, Vito Antonio Cimmelli, David Jou

Erschienen in: Mesoscopic Theories of Heat Transport in Nanosystems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The thermo-mechanical behavior of miniaturized systems, the characteristic lengths of which is of the order of few nanometers, is strongly influenced by memory, nonlocal, and nonlinear effects [1, 18, 27, 50]. In one-dimensional steady-state situations, in modeling the heat transport along nanowires or thin layers, some of these effects may be incorporated into a size-dependent effective thermal conductivity \(\lambda _{ \text{eff}}\) [2, 43], and a Fourier law (FL)-type equation may still be used with \(\lambda _{ \text{eff}}\) as the thermal conductivity, instead of the bulk value \(\lambda\). However, in fast perturbations, or under strong heat gradients, or in axial geometries an effective thermal conductivity is not enough to overcome the different problems related to the FL, as for instance, the infinite speed of propagation of thermal disturbances, or some genuinely nonlinear effects in steady states [9, 17, 25, 28, 30, 38]. Therefore, in modeling heat conduction, it is necessary to go beyond FL by introducing more general heat-transport equations, and analyze more general geometries than those considered in Chaps. 3 and 4. In Chap. 2 the nonlinear heat-transport equation (2.​16) has been introduced. Here we will analyze some consequences of it.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Of course, the latter is only true in nanodevices.
 
Literatur
1.
Zurück zum Zitat Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transports: from diffusive to ballistic regime. Appl. Phys. Lett. 90, 083109 (3 pp.) (2007) Alvarez, F.X., Jou, D.: Memory and nonlocal effects in heat transports: from diffusive to ballistic regime. Appl. Phys. Lett. 90, 083109 (3 pp.) (2007)
2.
Zurück zum Zitat Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (5 pp.) (2009) Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, 014317 (5 pp.) (2009)
3.
Zurück zum Zitat Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. J. Math. Phys. 32, 544–550 (1991)CrossRefMathSciNetMATH Anile, A.M., Pennisi, S., Sammartino, M.: A thermodynamical approach to Eddington factors. J. Math. Phys. 32, 544–550 (1991)CrossRefMathSciNetMATH
4.
Zurück zum Zitat Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRef
5.
Zurück zum Zitat Balandin, A.A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.-N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef Balandin, A.A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.-N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRef
6.
Zurück zum Zitat Benedict, L.X., Louie, S.G., Cohen, M.L.: Heat capacity of carbon nanotubes. Solid State Commun. 100, 177–180 (1996)CrossRef Benedict, L.X., Louie, S.G., Cohen, M.L.: Heat capacity of carbon nanotubes. Solid State Commun. 100, 177–180 (1996)CrossRef
7.
Zurück zum Zitat Cao, B.-Y., Guo, Z.-Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (6 pp.) (2007) Cao, B.-Y., Guo, Z.-Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (6 pp.) (2007)
8.
Zurück zum Zitat Capellotti, A., Fugallo, G., Paulatto, L., Lazzeri, M., Mauri, F., Marzari, N.: Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (7 pp.) (2015) Capellotti, A., Fugallo, G., Paulatto, L., Lazzeri, M., Mauri, F., Marzari, N.: Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (7 pp.) (2015)
9.
Zurück zum Zitat Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)CrossRefMATH Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)CrossRefMATH
10.
Zurück zum Zitat Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (13 pp.) (2009) Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (13 pp.) (2009)
11.
Zurück zum Zitat Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (9 pp.) (2010) Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (9 pp.) (2010)
12.
Zurück zum Zitat Criado-Sancho, J.M., Jou, D.: Heat transport in bulk/nanoporous/bulk silicon devices. Phys. Lett. A 377, 486–490 (2013)CrossRef Criado-Sancho, J.M., Jou, D.: Heat transport in bulk/nanoporous/bulk silicon devices. Phys. Lett. A 377, 486–490 (2013)CrossRef
13.
Zurück zum Zitat Criado-Sancho, J.M., del Castillo, L.F., Casas-Vázquez, J., Jou, D.: Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device. Phys. Lett. A 19, 1641–1644 (2012)CrossRef Criado-Sancho, J.M., del Castillo, L.F., Casas-Vázquez, J., Jou, D.: Theoretical analysis of thermal rectification in a bulk Si/nanoporous Si device. Phys. Lett. A 19, 1641–1644 (2012)CrossRef
14.
Zurück zum Zitat Criado-Sancho, J.M., Alvarez, F.X., Jou, D.: Thermal rectification in inhomogeneous nanoporous Si devices. J. Appl. Phys. 114, 053512 (2013)CrossRef Criado-Sancho, J.M., Alvarez, F.X., Jou, D.: Thermal rectification in inhomogeneous nanoporous Si devices. J. Appl. Phys. 114, 053512 (2013)CrossRef
15.
Zurück zum Zitat De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115, 164314 (2014)CrossRef De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115, 164314 (2014)CrossRef
16.
Zurück zum Zitat De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Thermal conductivity of group-IV semiconductors from a kinetic-collective model. Proc R. Soc. A 470, 20140371 (12 pp.) (2014) De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Thermal conductivity of group-IV semiconductors from a kinetic-collective model. Proc R. Soc. A 470, 20140371 (12 pp.) (2014)
17.
18.
Zurück zum Zitat Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shimizu, T.: Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (4 pp.) (2005) Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K., Ikuta, T., Abe, H., Shimizu, T.: Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (4 pp.) (2005)
19.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
20.
Zurück zum Zitat Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (3 pp.) (2008) Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (3 pp.) (2008)
22.
Zurück zum Zitat Guo, Z.-Y., Hou, Q.-W.: Thermal wave based on the thermomass model. J. Heat Transf. Trans. ASME 132, 072403 (6 pp.) (2010) Guo, Z.-Y., Hou, Q.-W.: Thermal wave based on the thermomass model. J. Heat Transf. Trans. ASME 132, 072403 (6 pp.) (2010)
23.
Zurück zum Zitat Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999)CrossRef Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999)CrossRef
24.
Zurück zum Zitat Joseph, D.D.: Stability of Fluid Motion. Springer, New York (1976) Joseph, D.D.: Stability of Fluid Motion. Springer, New York (1976)
26.
Zurück zum Zitat Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics revisited (1988–1998). Rep. Prog. Phys. 62, 1035–1142 (1999)CrossRef Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics revisited (1988–1998). Rep. Prog. Phys. 62, 1035–1142 (1999)CrossRef
27.
Zurück zum Zitat Jou, D., Casas-Vázquez, J., Lebon, G., Grmela, M.: A phenomenological scaling approach for heat transport in nano-systems. Appl. Math. Lett. 18, 963–967 (2005)CrossRefMATH Jou, D., Casas-Vázquez, J., Lebon, G., Grmela, M.: A phenomenological scaling approach for heat transport in nano-systems. Appl. Math. Lett. 18, 963–967 (2005)CrossRefMATH
28.
Zurück zum Zitat Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010)CrossRefMATH Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010)CrossRefMATH
29.
Zurück zum Zitat Ju, Y.S., Goodson, K.E.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999)CrossRef Ju, Y.S., Goodson, K.E.: Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74, 3005–3007 (1999)CrossRef
30.
Zurück zum Zitat Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)CrossRefMATH Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)CrossRefMATH
31.
Zurück zum Zitat Lee, S., Broido, D., Esfarjani, K., Chen, G.: Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (9 pp.) (2015) Lee, S., Broido, D., Esfarjani, K., Chen, G.: Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (9 pp.) (2015)
32.
Zurück zum Zitat Levermore, C.D.: Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984)CrossRef Levermore, C.D.: Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984)CrossRef
33.
Zurück zum Zitat Levermore, C.D., Pomraning, G.C.: A flux-limited diffusion theory. Astrophys. J. 248, 321–334 (1981)CrossRef Levermore, C.D., Pomraning, G.C.: A flux-limited diffusion theory. Astrophys. J. 248, 321–334 (1981)CrossRef
34.
Zurück zum Zitat Li, B., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (4 pp.) (2004) Li, B., Wang, L., Casati, G.: Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (4 pp.) (2004)
35.
Zurück zum Zitat Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012)CrossRef Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012)CrossRef
36.
Zurück zum Zitat Mendez, V., Fedotov, S., Horsthemke, W.: Reaction-Transport Systems. Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer, Berlin (2010)CrossRef Mendez, V., Fedotov, S., Horsthemke, W.: Reaction-Transport Systems. Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer, Berlin (2010)CrossRef
37.
Zurück zum Zitat Mihalas, D., Mihalas, B.W.: Foundations of Radiation Hydrodynamics. Oxford University Press, Oxford (1984)MATH Mihalas, D., Mihalas, B.W.: Foundations of Radiation Hydrodynamics. Oxford University Press, Oxford (1984)MATH
38.
Zurück zum Zitat Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)CrossRefMATH Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)CrossRefMATH
39.
Zurück zum Zitat Nika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A.: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (3 pp.) (2009) Nika, D.L., Ghosh, S., Pokatilov, E.P., Balandin, A.A.: Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl. Phys. Lett. 94, 203103 (3 pp.) (2009)
40.
Zurück zum Zitat Nika, D.L., Pokatilov, E.P., Askerox, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (12 pp.) (2009) Nika, D.L., Pokatilov, E.P., Askerox, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79, 155413 (12 pp.) (2009)
41.
Zurück zum Zitat Peierls, R.E.: Quantum Theory of Solids. Oxford University Press, London (1955)MATH Peierls, R.E.: Quantum Theory of Solids. Oxford University Press, London (1955)MATH
42.
Zurück zum Zitat Segal, D., Nitzan, A.: Spin-boson thermal rectifier. Phys. Rev. Lett. 94, 034301 (4 pp.) (2005) Segal, D., Nitzan, A.: Spin-boson thermal rectifier. Phys. Rev. Lett. 94, 034301 (4 pp.) (2005)
43.
Zurück zum Zitat Sellitto, A., Alvarez, F.X., Jou, D.: Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (7 pp.) (2010) Sellitto, A., Alvarez, F.X., Jou, D.: Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, 064302 (7 pp.) (2010)
44.
Zurück zum Zitat Sellitto, A., Alvarez, F.X., Jou, D.: Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. J. Appl. Phys. 107, 114312 (7 pp.) (2010) Sellitto, A., Alvarez, F.X., Jou, D.: Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. J. Appl. Phys. 107, 114312 (7 pp.) (2010)
45.
Zurück zum Zitat Sellitto, A., Cimmelli, V.A., Jou, D.: Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems. Physica D 241, 1344–1350 (2012)CrossRefMATH Sellitto, A., Cimmelli, V.A., Jou, D.: Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems. Physica D 241, 1344–1350 (2012)CrossRefMATH
46.
Zurück zum Zitat Sellitto, A., Jou, D., Bafaluy, J.: Nonlocal effects in radial heat transport in silicon thin layers and graphene sheets. Proc. R. Soc. A 468, 1217–1229 (2012)CrossRef Sellitto, A., Jou, D., Bafaluy, J.: Nonlocal effects in radial heat transport in silicon thin layers and graphene sheets. Proc. R. Soc. A 468, 1217–1229 (2012)CrossRef
47.
Zurück zum Zitat Sellitto, A., Cimmelli, V.A., Jou, D.: Entropy flux and anomalous axial heat transport at the nanoscale. Phys. Rev. B 87, 054302 (7 pp.) (2013) Sellitto, A., Cimmelli, V.A., Jou, D.: Entropy flux and anomalous axial heat transport at the nanoscale. Phys. Rev. B 87, 054302 (7 pp.) (2013)
48.
Zurück zum Zitat Shvarts, D., Delettrez, J., McCrory, L.R., Verdon, C.P.: Self-consistent reduction of the Spitzer-Härm electron thermal heat flux in steep temperature gradients in laser-produced plasmas. Phys. Rev. Lett. 47, 247–250 (1981)CrossRef Shvarts, D., Delettrez, J., McCrory, L.R., Verdon, C.P.: Self-consistent reduction of the Spitzer-Härm electron thermal heat flux in steep temperature gradients in laser-produced plasmas. Phys. Rev. Lett. 47, 247–250 (1981)CrossRef
49.
Zurück zum Zitat Terraneo, M., Peyrard, M., Casati, G.: Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (4 pp.) (2002) Terraneo, M., Peyrard, M., Casati, G.: Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys. Rev. Lett. 88, 094302 (4 pp.) (2002)
50.
Zurück zum Zitat Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)CrossRefMATH Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)CrossRefMATH
51.
Zurück zum Zitat Tzou, D.Y., Guo, Z.-Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010)CrossRef Tzou, D.Y., Guo, Z.-Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010)CrossRef
52.
Zurück zum Zitat Wang, M., Guo, Z.-Y.: Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys. Lett. A 374, 4312–4315 (2010)CrossRefMATH Wang, M., Guo, Z.-Y.: Understanding of temperature and size dependences of effective thermal conductivity of nanotubes. Phys. Lett. A 374, 4312–4315 (2010)CrossRefMATH
53.
Zurück zum Zitat Wang, M., Shan, X., Yang, N.: Understanding length dependences of effective thermal conductivity of nanowires. Phys. Lett. A 376, 3514–3517 (2012)CrossRef Wang, M., Shan, X., Yang, N.: Understanding length dependences of effective thermal conductivity of nanowires. Phys. Lett. A 376, 3514–3517 (2012)CrossRef
54.
Zurück zum Zitat Ward, A., Broido, D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 80, 085205 (5 pp.) (2010) Ward, A., Broido, D.A.: Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 80, 085205 (5 pp.) (2010)
55.
Zurück zum Zitat Yang, N., Zhang, G., Li, B.: Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (3 pp.) (2008) Yang, N., Zhang, G., Li, B.: Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (3 pp.) (2008)
Metadaten
Titel
Weakly Nonlocal and Nonlinear Heat Transport
verfasst von
Antonio Sellitto
Vito Antonio Cimmelli
David Jou
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-27206-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.