Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2020

11.05.2020

Wear-Resistant Carbon-Fiber-Reinforced Ti-Based Composite Obtained by Laser Metal Deposition

verfasst von: A. I. Gorunov

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon-fiber-reinforced metal-matrix composites (Ti6Al4V/CFs) were tailored by laser metal deposition. Ti6Al4V/CFs represents a Ti-based matrix, inside which distributed carbon fibers, prime crystal-like titanium carbide (TiC) precipitates, and secondary TiC precipitates were formed. The metal matrix was provided by α martensitic phase and needle-like TiC distributed into the prior β grains. Soaking for 1 h at a temperature of 950 °C, quenching in water obtain coagulation and spheroidization of the α-phase and a decrease in the size of the primary β grain. Wear resistance of Ti6Al4V/CFs by heat treatment was improved to compare Ti6Al4V specimens.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Tang and C. Hu, Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature. Ceramic Composites for Aerospace Applications: A Review, J. Mater. Sci. Technol., 2017, 33, p 117–130 S. Tang and C. Hu, Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature. Ceramic Composites for Aerospace Applications: A Review, J. Mater. Sci. Technol., 2017, 33, p 117–130
2.
Zurück zum Zitat K.N. Shivakumar, G. Swaminathan, and M. Sharpe, Carbon/Vinyl Ester Composites for Enhanced Performance in Marine Applications, J. Reinf. Plast. Compos., 2006, 33, p 1101–1116 K.N. Shivakumar, G. Swaminathan, and M. Sharpe, Carbon/Vinyl Ester Composites for Enhanced Performance in Marine Applications, J. Reinf. Plast. Compos., 2006, 33, p 1101–1116
3.
Zurück zum Zitat V.S. Balakrishnan and H. Seidlitz, Potential Repair Techniques for Automotive Composites: A Review, Compos. Part. B Eng., 2018, 145, p 28–38 V.S. Balakrishnan and H. Seidlitz, Potential Repair Techniques for Automotive Composites: A Review, Compos. Part. B Eng., 2018, 145, p 28–38
4.
Zurück zum Zitat K. Chan, B. Jia, H. Lin, N. Hameed, J. Lee, and K. Lau, A Critical Review on Multifunctional Composites as Structural Capacitors for Energy Storage, Compos. Struct., 2018, 188, p 126–142 K. Chan, B. Jia, H. Lin, N. Hameed, J. Lee, and K. Lau, A Critical Review on Multifunctional Composites as Structural Capacitors for Energy Storage, Compos. Struct., 2018, 188, p 126–142
5.
Zurück zum Zitat J. Xu, L. Zhao, X. Deng, and H. Yu, High Temperature Simulation of Short Carbon Fiber-Reinforced Nickel Base Composite, Mater. Des., 2006, 27, p 1152–1156 J. Xu, L. Zhao, X. Deng, and H. Yu, High Temperature Simulation of Short Carbon Fiber-Reinforced Nickel Base Composite, Mater. Des., 2006, 27, p 1152–1156
6.
Zurück zum Zitat A. Khoddamzadeh, R. Liu, M. Liang, and Q. Yang, Wear Resistant Carbon Fiber Reinforced Stellite Alloy Composites, Mater. Des. (1980–2015), 2014, 56, p 487–494 A. Khoddamzadeh, R. Liu, M. Liang, and Q. Yang, Wear Resistant Carbon Fiber Reinforced Stellite Alloy Composites, Mater. Des. (1980–2015), 2014, 56, p 487–494
7.
Zurück zum Zitat J. Rams, A. Ureña, M.D. Escalera, and M. Sánchez, Electroless Nickel Coated Short Carbon Fibres in Aluminium Matrix Composites, Compos. Part. A Appl S, 2007, 38, p 566–575 J. Rams, A. Ureña, M.D. Escalera, and M. Sánchez, Electroless Nickel Coated Short Carbon Fibres in Aluminium Matrix Composites, Compos. Part. A Appl S, 2007, 38, p 566–575
8.
Zurück zum Zitat L.G. Hou, R.Z. Wu, X.D. Wang, J.H. Zhang, M.L. Zhang, A.P. Dong, and B.D. Sun, Microstructure, Mechanical Properties and Thermal Conductivity of the Short Carbon Fiber Reinforced Magnesium Matrix Composites, J. Alloys Compd., 2017, 695, p 2820–2826 L.G. Hou, R.Z. Wu, X.D. Wang, J.H. Zhang, M.L. Zhang, A.P. Dong, and B.D. Sun, Microstructure, Mechanical Properties and Thermal Conductivity of the Short Carbon Fiber Reinforced Magnesium Matrix Composites, J. Alloys Compd., 2017, 695, p 2820–2826
9.
Zurück zum Zitat Y. Tang, H. Liu, H. Zhao, L. Liu, and Y. Wu, Friction and Wear Properties of Copper Matrix Composites Reinforced with Short Carbon Fibers, Mater. Des., 2008, 29, p 257–261 Y. Tang, H. Liu, H. Zhao, L. Liu, and Y. Wu, Friction and Wear Properties of Copper Matrix Composites Reinforced with Short Carbon Fibers, Mater. Des., 2008, 29, p 257–261
10.
Zurück zum Zitat K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, and M. Naebe, Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties, Compos. Part. A. Appl. Sci., 2017, 92, p 70–96 K. Shirvanimoghaddam, S.U. Hamim, M. Karbalaei Akbari, S.M. Fakhrhoseini, H. Khayyam, A.H. Pakseresht, E. Ghasali, M. Zabet, K.S. Munir, S. Jia, J.P. Davim, and M. Naebe, Carbon Fiber Reinforced Metal Matrix Composites: Fabrication Processes and Properties, Compos. Part. A. Appl. Sci., 2017, 92, p 70–96
11.
Zurück zum Zitat E. Akbarzadeh, J.A. Picas, and M. Teresa Baile, Microstructure and Properties of Aluminum Silicon/Short Fibre Carbon Composites Fabricated by Semi-Solid Thixomixing, Mater. Des., 2015, 88, p 683–692 E. Akbarzadeh, J.A. Picas, and M. Teresa Baile, Microstructure and Properties of Aluminum Silicon/Short Fibre Carbon Composites Fabricated by Semi-Solid Thixomixing, Mater. Des., 2015, 88, p 683–692
12.
Zurück zum Zitat Y. Sun, C. Hong, X. Zhang, J. Han, and Q. Qu, Preparation and Properties of SiOC Ceramic Modified Carbon Fiber Needled Felt Preform Composites, Ceram. Int., 2020, 46, p 1743–1749 Y. Sun, C. Hong, X. Zhang, J. Han, and Q. Qu, Preparation and Properties of SiOC Ceramic Modified Carbon Fiber Needled Felt Preform Composites, Ceram. Int., 2020, 46, p 1743–1749
13.
Zurück zum Zitat Ch Shi, J. Lei, S. Zhou, X. Dai, and L. Zhang, Microstructure and Mechanical Properties of Carbon Fibers Strengthened Ni-Based Coatings by Laser Cladding: The Effect of Carbon Fiber Contents, J. Alloys Compd., 2018, 744(5), p 146–155 Ch Shi, J. Lei, S. Zhou, X. Dai, and L. Zhang, Microstructure and Mechanical Properties of Carbon Fibers Strengthened Ni-Based Coatings by Laser Cladding: The Effect of Carbon Fiber Contents, J. Alloys Compd., 2018, 744(5), p 146–155
14.
Zurück zum Zitat J. Lei, C. Shi, S. Zhou, Z. Gu, and L. Zhang, Enhanced Corrosion and Wear Resistance Properties of Carbon Fiber Reinforced Ni-Based Composite Coating by Laser Cladding, Surf. Coat. Technol., 2018, 334, p 274–285 J. Lei, C. Shi, S. Zhou, Z. Gu, and L. Zhang, Enhanced Corrosion and Wear Resistance Properties of Carbon Fiber Reinforced Ni-Based Composite Coating by Laser Cladding, Surf. Coat. Technol., 2018, 334, p 274–285
15.
Zurück zum Zitat L. Liu, W. Li, Y. Tang, B. Shen, and W. Hu, Friction and Wear Properties of Short Carbon Fiber Reinforced Aluminum Matrix Composites, Wear, 2009, 266(7–8), p 733–738 L. Liu, W. Li, Y. Tang, B. Shen, and W. Hu, Friction and Wear Properties of Short Carbon Fiber Reinforced Aluminum Matrix Composites, Wear, 2009, 266(7–8), p 733–738
16.
Zurück zum Zitat I. Gurrappa, Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications, Mater. Charact., 2003, 51, p 131–139 I. Gurrappa, Characterization of Titanium Alloy Ti-6Al-4V for Chemical, Marine and Industrial Applications, Mater. Charact., 2003, 51, p 131–139
17.
Zurück zum Zitat C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers, Biomedical Applications of Titanium and Its Alloys, J. Miner. Met. Mater. Soc., 2008, 60(3), p 46–49 C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers, Biomedical Applications of Titanium and Its Alloys, J. Miner. Met. Mater. Soc., 2008, 60(3), p 46–49
18.
Zurück zum Zitat Y. Hatta, T. Sakai, T. Shiraki, T. Sannohe, and O. Tada, Process for Production of Titanium Alloy, US Patent no 6918942 B2, 2005 (July 19). Y. Hatta, T. Sakai, T. Shiraki, T. Sannohe, and O. Tada, Process for Production of Titanium Alloy, US Patent no 6918942 B2, 2005 (July 19).
19.
Zurück zum Zitat X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R, 2004, 47(3–4), p 49–121 X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R, 2004, 47(3–4), p 49–121
20.
Zurück zum Zitat F. Weng, C. Chen, and H. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A Review, Mater. Des., 2014, 58, p 412–425 F. Weng, C. Chen, and H. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A Review, Mater. Des., 2014, 58, p 412–425
21.
Zurück zum Zitat Z. Zhou, X. Liu, S. Zhuang, M. Wang, Y. Luo, R. Tu, and S. Zhou, Laser in Situ Synthesizing Ti5Si3/Al3Ni2 Reinforced Al3Ti/NiTi Composite Coatings: Microstructure, Mechanical Characteristics and Oxidation Behavior, Opt. Laser Technol., 2019, 109, p 99–109 Z. Zhou, X. Liu, S. Zhuang, M. Wang, Y. Luo, R. Tu, and S. Zhou, Laser in Situ Synthesizing Ti5Si3/Al3Ni2 Reinforced Al3Ti/NiTi Composite Coatings: Microstructure, Mechanical Characteristics and Oxidation Behavior, Opt. Laser Technol., 2019, 109, p 99–109
22.
Zurück zum Zitat Y. Yang, C. Zhang, Y. Dai, and J. Luo, Tribological Properties of Titanium Alloys Under Lubrication of SEE Oil and Aqueous Solutions, Tribol. Int., 2017, 109, p 40–47 Y. Yang, C. Zhang, Y. Dai, and J. Luo, Tribological Properties of Titanium Alloys Under Lubrication of SEE Oil and Aqueous Solutions, Tribol. Int., 2017, 109, p 40–47
23.
Zurück zum Zitat M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, and H. Mohammadian-Semnani, Influence of Using Electroless Ni-P Coated WC-Co Powder on Laser Cladding of Stainless Steel, Surf. Coat. Technol., 2018, 348, p 41–54 M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour, and H. Mohammadian-Semnani, Influence of Using Electroless Ni-P Coated WC-Co Powder on Laser Cladding of Stainless Steel, Surf. Coat. Technol., 2018, 348, p 41–54
24.
Zurück zum Zitat Y.S. Tian, C.Z. Chen, D.Y. Wang, and T.Q. Lei, Laser Surface Modification of Titanium Alloys—A Review, Surf. Rev. Lett., 2005, 12, p 123–130 Y.S. Tian, C.Z. Chen, D.Y. Wang, and T.Q. Lei, Laser Surface Modification of Titanium Alloys—A Review, Surf. Rev. Lett., 2005, 12, p 123–130
25.
Zurück zum Zitat N. Chandra, M. Sharma, D.K. Singh, and S.S. Amritphale, Synthesis of Nano-TiC Powder Using Titanium Gel Precursor and Carbon Particles, Mater. Lett., 2009, 63, p 1051–1053 N. Chandra, M. Sharma, D.K. Singh, and S.S. Amritphale, Synthesis of Nano-TiC Powder Using Titanium Gel Precursor and Carbon Particles, Mater. Lett., 2009, 63, p 1051–1053
26.
Zurück zum Zitat M. Razavi, M.R. Rahimipour, and A.H. Rajabi-Zamani, Synthesis of Nanocrystalline TiC Powder from Impure Ti Chips Via Mechanical Alloying, J. Alloys Compd., 2007, 436, p 142–145 M. Razavi, M.R. Rahimipour, and A.H. Rajabi-Zamani, Synthesis of Nanocrystalline TiC Powder from Impure Ti Chips Via Mechanical Alloying, J. Alloys Compd., 2007, 436, p 142–145
27.
Zurück zum Zitat H. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Noyes Publications, Park Ridge, 1996 H. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, Noyes Publications, Park Ridge, 1996
28.
Zurück zum Zitat H. Jia, Z. Zhanga, Z. Qia, G. Liu, and X. Biana, Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying, J. Alloys Compd., 2009, 472, p 97–103 H. Jia, Z. Zhanga, Z. Qia, G. Liu, and X. Biana, Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying, J. Alloys Compd., 2009, 472, p 97–103
29.
Zurück zum Zitat B.H. Lohse, A. Calka, and D. Wexler, Effect of Starting Composition on the Synthesis of Nanocrystalline TiC During Milling of Titanium and Carbon, J. Alloys Compd., 2005, 394, p 148–151 B.H. Lohse, A. Calka, and D. Wexler, Effect of Starting Composition on the Synthesis of Nanocrystalline TiC During Milling of Titanium and Carbon, J. Alloys Compd., 2005, 394, p 148–151
30.
Zurück zum Zitat L. Bo, C. Lishan, Z. Yanjun, and X. Chunming, Synthesis of TiC Powder by Mechanical Alloying of Titanium and Asphalt, Chin. J. Chem. Eng., 2007, 15, p 138–140 L. Bo, C. Lishan, Z. Yanjun, and X. Chunming, Synthesis of TiC Powder by Mechanical Alloying of Titanium and Asphalt, Chin. J. Chem. Eng., 2007, 15, p 138–140
31.
Zurück zum Zitat B. Cochepin, V. Gauthier, D. Vrel, and S. Dubois, Crystal Growth of TiC Grains During SHS Reactions, J. Cryst. Growth, 2007, 304, p 481–486 B. Cochepin, V. Gauthier, D. Vrel, and S. Dubois, Crystal Growth of TiC Grains During SHS Reactions, J. Cryst. Growth, 2007, 304, p 481–486
32.
Zurück zum Zitat B. Cochepin, E. Heian, N. Karnatak, D. Vrel, and S. Dubois, TiC Nucleation/Growth Processes During SHS Reactions, Powder Technol., 2005, 157, p 92–99 B. Cochepin, E. Heian, N. Karnatak, D. Vrel, and S. Dubois, TiC Nucleation/Growth Processes During SHS Reactions, Powder Technol., 2005, 157, p 92–99
33.
Zurück zum Zitat M.B. Rahaei, R. Yazdani rad, A. Kazemzadeh, and T. Ebadzadeh, Mechanochemical Synthesis of Nano TiC Powder by Mechanical Milling of Titanium and Graphite Powders, Powder Technol., 2012, 217, p 369–376 M.B. Rahaei, R. Yazdani rad, A. Kazemzadeh, and T. Ebadzadeh, Mechanochemical Synthesis of Nano TiC Powder by Mechanical Milling of Titanium and Graphite Powders, Powder Technol., 2012, 217, p 369–376
34.
Zurück zum Zitat S. Mohapatra, D. Kumar Mishra, and S. Kumar Singh, Microscopic and Spectroscopic Analyses of TiC Powder Synthesized by Thermal Plasma Technique, Powder Technol., 2013, 237, p 41–45 S. Mohapatra, D. Kumar Mishra, and S. Kumar Singh, Microscopic and Spectroscopic Analyses of TiC Powder Synthesized by Thermal Plasma Technique, Powder Technol., 2013, 237, p 41–45
35.
Zurück zum Zitat X.-Y. Tan, L.-M. Luo, H. Chena, P. Li, G. Luo, X. Zan, J. Cheng, and Y. Wu, Synthesis and Formation Mechanism of W/TiC Composite Powders by a Wet Chemical Route, Powder Technol., 2015, 280, p 83–88 X.-Y. Tan, L.-M. Luo, H. Chena, P. Li, G. Luo, X. Zan, J. Cheng, and Y. Wu, Synthesis and Formation Mechanism of W/TiC Composite Powders by a Wet Chemical Route, Powder Technol., 2015, 280, p 83–88
36.
Zurück zum Zitat B. AlMangour, D. Grzesiak, and J.-M. Yang, In Situ Formation of TiC-Particle-Reinforced Stainless Steel Matrix Nanocomposites During Ball Milling: Feedstock Powder Preparation for Selective Laser Melting at Various Energy Densities, Powder Technol., 2018, 326, p 467–478 B. AlMangour, D. Grzesiak, and J.-M. Yang, In Situ Formation of TiC-Particle-Reinforced Stainless Steel Matrix Nanocomposites During Ball Milling: Feedstock Powder Preparation for Selective Laser Melting at Various Energy Densities, Powder Technol., 2018, 326, p 467–478
37.
Zurück zum Zitat F. Saba, S. Abdolkarim Sajjadi, A. Ghadirzadeh, and F. Di Fonzo, A Novel Method for Enhancing Interface Strength of TiC Coated Layer/Ti Substrate, Adv. Powder Technol., 2016, 27, p 354–359 F. Saba, S. Abdolkarim Sajjadi, A. Ghadirzadeh, and F. Di Fonzo, A Novel Method for Enhancing Interface Strength of TiC Coated Layer/Ti Substrate, Adv. Powder Technol., 2016, 27, p 354–359
38.
Zurück zum Zitat M.M. Savalani, C.C. Ng, Q.H. Li, and H.C. Man, In Situ Formation of Titanium Carbide Using Titanium and Carbon-Nanotube Powders by Laser Cladding, Appl. Surf. Sci., 2012, 258, p 3173–3177 M.M. Savalani, C.C. Ng, Q.H. Li, and H.C. Man, In Situ Formation of Titanium Carbide Using Titanium and Carbon-Nanotube Powders by Laser Cladding, Appl. Surf. Sci., 2012, 258, p 3173–3177
39.
Zurück zum Zitat A.I. Gorunov, Complex Refurbishment of Titanium Turbine Blades by Applying Heat-Resistant Coatings by Direct Metal Deposition, Eng. Fail. Anal., 2018, 86, p 115–130 A.I. Gorunov, Complex Refurbishment of Titanium Turbine Blades by Applying Heat-Resistant Coatings by Direct Metal Deposition, Eng. Fail. Anal., 2018, 86, p 115–130
40.
Zurück zum Zitat X. Su, W. Tao, Y. Chen, X. Chen, and Z. Tian, Microstructural Characteristics and Formation Mechanism of Laser Cladding of Titanium Alloys on Carbon Fiber Reinforced Thermoplastics, Mater. Lett., 2017, 195, p 228–231 X. Su, W. Tao, Y. Chen, X. Chen, and Z. Tian, Microstructural Characteristics and Formation Mechanism of Laser Cladding of Titanium Alloys on Carbon Fiber Reinforced Thermoplastics, Mater. Lett., 2017, 195, p 228–231
41.
Zurück zum Zitat A.I. Gorunov, Laser Alloying of Surface of Ti-5.5Al-2Zr-1Mo-1V Titanium Near-α-Alloy Prepared Via Melted by Pulsed Laser Radiation TiC Particles, Lasers Manuf. Mater. Process., 2019, 6, p 26–40 A.I. Gorunov, Laser Alloying of Surface of Ti-5.5Al-2Zr-1Mo-1V Titanium Near-α-Alloy Prepared Via Melted by Pulsed Laser Radiation TiC Particles, Lasers Manuf. Mater. Process., 2019, 6, p 26–40
42.
Zurück zum Zitat A.I. Gorunov, Investigation Microstructure of Carbon Fibers Reinforced Composite on Fe and Ni-Based Obtained by Laser Metal Deposition, Surf. Coat. Technol., 2019, 364, p 279–288 A.I. Gorunov, Investigation Microstructure of Carbon Fibers Reinforced Composite on Fe and Ni-Based Obtained by Laser Metal Deposition, Surf. Coat. Technol., 2019, 364, p 279–288
43.
Zurück zum Zitat X.-B. Liu, X.-J. Meng, H.-Q. Liu, G.-L. Shi, S.-H. Wu, C.-F. Sun, M.-D. Wang, and L.-H. Qi, Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy, Mater. Des., 2014, 55, p 404–409 X.-B. Liu, X.-J. Meng, H.-Q. Liu, G.-L. Shi, S.-H. Wu, C.-F. Sun, M.-D. Wang, and L.-H. Qi, Development and Characterization of Laser Clad High Temperature Self-Lubricating Wear Resistant Composite Coatings on Ti–6Al–4V Alloy, Mater. Des., 2014, 55, p 404–409
44.
Zurück zum Zitat B. AlMangour, D. Grzesiak, and J.-M. Yang, Selective Laser Melting of TiB2/316L Stainless Steel Composites: The Roles of Powder Preparation and Hot Isostatic Pressing Post-Treatment, Powder Technol., 2017, 309, p 37–48 B. AlMangour, D. Grzesiak, and J.-M. Yang, Selective Laser Melting of TiB2/316L Stainless Steel Composites: The Roles of Powder Preparation and Hot Isostatic Pressing Post-Treatment, Powder Technol., 2017, 309, p 37–48
45.
Zurück zum Zitat B. AlMangour, D. Grzesiak, and J.-M. Yang, In-Situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting, J. Alloys Compd., 2017, 706, p 409–418 B. AlMangour, D. Grzesiak, and J.-M. Yang, In-Situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting, J. Alloys Compd., 2017, 706, p 409–418
46.
Zurück zum Zitat B. AlMangour, D. Grzesiak, J. Cheng, and Y. Ertas, Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods, J. Mater. Process. Technol., 2018, 257, p 288 B. AlMangour, D. Grzesiak, J. Cheng, and Y. Ertas, Thermal Behavior of the Molten Pool, Microstructural Evolution, and Tribological Performance During Selective Laser Melting of TiC/316L Stainless Steel Nanocomposites: Experimental and Simulation Methods, J. Mater. Process. Technol., 2018, 257, p 288
47.
Zurück zum Zitat C. Hong, D. Gu, D. Dai, M. Alkhayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, and R. Poprawe, Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 Based Composite Parts: Tailored Microstructures and Enhanced Performance, Mater. Sci. Eng. A, 2015, 635, p 118–128 C. Hong, D. Gu, D. Dai, M. Alkhayat, W. Urban, P. Yuan, S. Cao, A. Gasser, A. Weisheit, I. Kelbassa, M. Zhong, and R. Poprawe, Laser Additive Manufacturing of Ultrafine TiC Particle Reinforced Inconel 625 Based Composite Parts: Tailored Microstructures and Enhanced Performance, Mater. Sci. Eng. A, 2015, 635, p 118–128
Metadaten
Titel
Wear-Resistant Carbon-Fiber-Reinforced Ti-Based Composite Obtained by Laser Metal Deposition
verfasst von
A. I. Gorunov
Publikationsdatum
11.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04835-5

Weitere Artikel der Ausgabe 5/2020

Journal of Materials Engineering and Performance 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.