Skip to main content

2019 | OriginalPaper | Buchkapitel

Wearable Pulse Wave Monitor Resistant to Motion Artifacts

verfasst von : A. A. Fedotov, S. A. Akulov

Erschienen in: World Congress on Medical Physics and Biomedical Engineering 2018

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this study is to create a wearable device for long-term pulse wave monitoring as well as to investigate the possibility of using adaptive noise cancellation approach for reducing motion artifacts occurred during the real-life recording. In our study wearable monitoring device have acquired pulse wave by using photoplethysmography approach and human movement with triaxial accelerometer. The electrical design of wearable device was based on synchronous demodulation and using 24 bits sigma-delta analog-to-digital converter. To achieve effective and robust motion artifacts reduction we create the pulse wave signal processing method based on band-pass filtering and adaptive noise cancellation. Pulse wave signals were initially pass-band filtered at 0.5–10 Hz to remove noise, electrical and physiological interferences, using a zero-phase forward and reverse digital filter, which first filtered the raw signal in the forward direction, and subsequently filtered the reversed signal, thus the resultant signal has zero-phase distortion. Adaptive noise cancellation was implemented by using a recursive least squares algorithm based on the solution of the Wiener-Hopf equation. Our studies have shown that the best results of pulse wave signal processing are achieved for the following parameters of the algorithm: the forgetting factor of 0.99; filter order of 16. Performance of proposed processing technique was evaluated by assessing signal-to-noise ratio (SNR) of the filtered signal and compared with other approaches such as wavelet multiresolution decomposition and moving average filtering. For correct estimation of SNR we used robust approach based on the eigenvalues of signal autocorrelation matrix. This study indicates that designed wearable device based on principles of photoplethysmography for unobtrusive and noninvasive recording of pulse waves and using advanced digital processing technique for removing motion artifacts could provide an effective and performance tools for improving the long-term healthcare monitoring of human vital signs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.G. Ekeland et al, Effectiveness of telemedicine: A systematic review of reviews, International Journal of Medical Informatics, 79(11), 2010, 736–771. A.G. Ekeland et al, Effectiveness of telemedicine: A systematic review of reviews, International Journal of Medical Informatics, 79(11), 2010, 736–771.
2.
Zurück zum Zitat G. Pare et al, Comparing the costs of home telemonitoring and usual care of chronic obstructive pulmonary disease patients: A randomized controlled trial, European Research in Telemedicine, 2(2), 2013, 35–47. G. Pare et al, Comparing the costs of home telemonitoring and usual care of chronic obstructive pulmonary disease patients: A randomized controlled trial, European Research in Telemedicine, 2(2), 2013, 35–47.
3.
Zurück zum Zitat J. Allen, Photoplethysmography and its application in clinical physiological measurement, Physiological Measurement, 28, 2007, 1–39. J. Allen, Photoplethysmography and its application in clinical physiological measurement, Physiological Measurement, 28, 2007, 1–39.
4.
Zurück zum Zitat T.H. Fu, Heart rate extraction from photoplethysmogram waveform using wavelet multi-resolution analysis, Journal of medical and biological engineering, 28(4), 2008, 229–232. T.H. Fu, Heart rate extraction from photoplethysmogram waveform using wavelet multi-resolution analysis, Journal of medical and biological engineering, 28(4), 2008, 229–232.
5.
Zurück zum Zitat A.A. Fedotov Selection of parameters for filtering distal arterial pulse signal using multi-resolution wavelet transforms, Springer: Biomedical Engineering, 47(3). 2013, 146–149. A.A. Fedotov Selection of parameters for filtering distal arterial pulse signal using multi-resolution wavelet transforms, Springer: Biomedical Engineering, 47(3). 2013, 146–149.
6.
Zurück zum Zitat A.A. Fedotov, S.A. Akulov, Structure of arterial pulse signal transducers, Springer: Biomedical Engineering, 48(3), 2014, 160–163. A.A. Fedotov, S.A. Akulov, Structure of arterial pulse signal transducers, Springer: Biomedical Engineering, 48(3), 2014, 160–163.
7.
Zurück zum Zitat J.G. Webster Design of Pulse Oximeters (Taylor & Francis, Bristol, 1997). J.G. Webster Design of Pulse Oximeters (Taylor & Francis, Bristol, 1997).
8.
Zurück zum Zitat R.M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach (IEEE Press and Wiley, New York, 2002). R.M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach (IEEE Press and Wiley, New York, 2002).
9.
Zurück zum Zitat F.J. Theis, A. Meyer-Base, Biomedical signal analysis. Contemporary methods and applications (The MIT Press, 2010). F.J. Theis, A. Meyer-Base, Biomedical signal analysis. Contemporary methods and applications (The MIT Press, 2010).
10.
Zurück zum Zitat D.L. Donoho (1995) De-Noising by Soft-Thresholding, IEEE Transactions on Information Theory, 41(3), 1995, 613–627. D.L. Donoho (1995) De-Noising by Soft-Thresholding, IEEE Transactions on Information Theory, 41(3), 1995, 613–627.
11.
Zurück zum Zitat W.Y. Shen et al, Research of fetal ECG extraction using wavelet analysis and adaptive filtering, Computers in Biology and Medicine, 10, 2013, 1622–1627. W.Y. Shen et al, Research of fetal ECG extraction using wavelet analysis and adaptive filtering, Computers in Biology and Medicine, 10, 2013, 1622–1627.
12.
Zurück zum Zitat A.A. Fedotov, Amplitude–time method for detecting characteristic pulse wave points, Springer: Biomedical Engineering, 46(6), 2013, 241–245. A.A. Fedotov, Amplitude–time method for detecting characteristic pulse wave points, Springer: Biomedical Engineering, 46(6), 2013, 241–245.
Metadaten
Titel
Wearable Pulse Wave Monitor Resistant to Motion Artifacts
verfasst von
A. A. Fedotov
S. A. Akulov
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-9038-7_158

Neuer Inhalt