Skip to main content

2020 | OriginalPaper | Buchkapitel

Wearable Sensors Data-Fusion and Machine-Learning Method for Fall Detection and Activity Recognition

verfasst von : Hristijan Gjoreski, Simon Stankoski, Ivana Kiprijanovska, Anastasija Nikolovska, Natasha Mladenovska, Marija Trajanoska, Bojana Velichkovska, Martin Gjoreski, Mitja Luštrek, Matjaž Gams

Erschienen in: Challenges and Trends in Multimodal Fall Detection for Healthcare

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Human falls are common source of injury among the elderly, because often the elderly person is injured and cannot call for help. In the literature this is addressed by various fall-detection systems, of which most common are the ones that use wearable sensors. This paper describes the winning method developed for the Challenge Up: Multimodal Fall Detection competition. It is a multi-sensor data-fusion machine-learning method that recognizes human activities and falls using 5 wearable inertial sensors: accelerometers and gyroscopes. The method was evaluated on a dataset collected by 12 subjects of which 3 were used as a test-data for the challenge. In order to optimally adapt the method to the 3 test subjects, we performed an unsupervised similarity search—that finds the three most similar users to the three users in the test data. This helped us to tune the method and its parameters to the 3 most similar users as the ones used for the test. The internal evaluation on the 9 users showed that with this optimized configuration the method achieves 98% accuracy. During the final evaluation for the challenge, our method achieved the highest results (82.5% F1-score, and 98% accuracy) and won the competition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
 
2
The code developed for the challenge is available at: https://​github.​com/​challengeupwinne​r/​challengeupcode.
 
Literatur
1.
Zurück zum Zitat Asch, V.V.: Macro- and micro-averaged evaluation measures. Comput. Sci. (2013) Asch, V.V.: Macro- and micro-averaged evaluation measures. Comput. Sci. (2013)
2.
Zurück zum Zitat Aziz, O., Musungi, M., Park, E.J., Mori, G., Robinovitch, S.N.: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. J. Med. Biol. Eng. Comput. 55(1), 45–55 (2017)CrossRef Aziz, O., Musungi, M., Park, E.J., Mori, G., Robinovitch, S.N.: A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. J. Med. Biol. Eng. Comput. 55(1), 45–55 (2017)CrossRef
3.
Zurück zum Zitat Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J Mach. Learn. Res. 13, 281–305 (2012)MathSciNetMATH Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J Mach. Learn. Res. 13, 281–305 (2012)MathSciNetMATH
4.
Zurück zum Zitat Bourbia, A.L., Son, H., Shin, B., Kim, T., Lee, D., Hyun, S.J.: Temporal dependency rule learning based group activity recognition in smart spaces (2016) Bourbia, A.L., Son, H., Shin, B., Kim, T., Lee, D., Hyun, S.J.: Temporal dependency rule learning based group activity recognition in smart spaces (2016)
5.
Zurück zum Zitat Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: ACM SIGKDD International Conference, vol. 22, pp. 785–794 (2016) Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: ACM SIGKDD International Conference, vol. 22, pp. 785–794 (2016)
6.
Zurück zum Zitat Degen, T., Jaeckel, H., Rufer, M., Wyss, S.: SPEEDY: A fall detector in a wrist watch. In: Proceeding Seventh IEEE International Symposium on Wearable Computing, pp. 184–187 (2003) Degen, T., Jaeckel, H., Rufer, M., Wyss, S.: SPEEDY: A fall detector in a wrist watch. In: Proceeding Seventh IEEE International Symposium on Wearable Computing, pp. 184–187 (2003)
7.
Zurück zum Zitat Doughty, K., Lewis, R., McIntosh, A.: The design of a practical and reliable fall detector for community and institutional telecare. J. Telemed. Telecare 6, S150–S154 (2000)CrossRef Doughty, K., Lewis, R., McIntosh, A.: The design of a practical and reliable fall detector for community and institutional telecare. J. Telemed. Telecare 6, S150–S154 (2000)CrossRef
8.
Zurück zum Zitat Friedman, S.M., Munoz, B., West, S.K., Rubin, G.S., Fried, L.P.: Falls and fear of falling: Which comes first? A longitudinal prediction model suggests strategies for primary and secondary prevention. J. Am. Geriatr. Soc. 1329–1335 (2000)CrossRef Friedman, S.M., Munoz, B., West, S.K., Rubin, G.S., Fried, L.P.: Falls and fear of falling: Which comes first? A longitudinal prediction model suggests strategies for primary and secondary prevention. J. Am. Geriatr. Soc. 1329–1335 (2000)CrossRef
9.
Zurück zum Zitat Friedman, A., Chehade, N.H., Chien, C., Pottie, G.: Estimation of accelerometer orientation for activity recognition, pp. 2076–2079. Engineering in Medicine and Biology Society (EMBC) (2012) Friedman, A., Chehade, N.H., Chien, C., Pottie, G.: Estimation of accelerometer orientation for activity recognition, pp. 2076–2079. Engineering in Medicine and Biology Society (EMBC) (2012)
10.
Zurück zum Zitat Gillespie, L.D., Robertson, M.C., Gillespie, W.J., Lamb, S.E., Gates, S., Cumming, R.G., Rowe, B.H.: Interventions for preventing falls in older people living in the community (review). The Cochrane Library, 4 (2009) Gillespie, L.D., Robertson, M.C., Gillespie, W.J., Lamb, S.E., Gates, S., Cumming, R.G., Rowe, B.H.: Interventions for preventing falls in older people living in the community (review). The Cochrane Library, 4 (2009)
11.
Zurück zum Zitat Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recogn. Lett. 27(4), 294–300 (2006)CrossRef Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover classification. Pattern Recogn. Lett. 27(4), 294–300 (2006)CrossRef
12.
Zurück zum Zitat Gjoreski, H., Bizjak, J., Gams, M.: Using smartwatch as telecare and fall detection device. In: 12th International Conference on Intelligent Environments (IE), pp. 242–245 (2016a) Gjoreski, H., Bizjak, J., Gams, M.: Using smartwatch as telecare and fall detection device. In: 12th International Conference on Intelligent Environments (IE), pp. 242–245 (2016a)
13.
Zurück zum Zitat Gjoreski, M., Gjoreski, H., Luštrek, M., Gams, M.: How accurately can your wrist device recognize daily activities and detect falls? Sensors 16(6), 800 (2016b)CrossRef Gjoreski, M., Gjoreski, H., Luštrek, M., Gams, M.: How accurately can your wrist device recognize daily activities and detect falls? Sensors 16(6), 800 (2016b)CrossRef
14.
Zurück zum Zitat Gjoreskic, H., Gams, M., Luštrek, M.: Context-based fall detection and activity recognition using inertial and location sensors. J. Ambient Intell. Smart Env. 6(4), 419–433 (2014)CrossRef Gjoreskic, H., Gams, M., Luštrek, M.: Context-based fall detection and activity recognition using inertial and location sensors. J. Ambient Intell. Smart Env. 6(4), 419–433 (2014)CrossRef
15.
Zurück zum Zitat Gjoreski, H., Lustrek, M., Gams, M.: Accelerometer placement for posture recognition and fall detection. In: Seventh International Conference on Intelligent Environments, pp. 47–54 (2011) Gjoreski, H., Lustrek, M., Gams, M.: Accelerometer placement for posture recognition and fall detection. In: Seventh International Conference on Intelligent Environments, pp. 47–54 (2011)
16.
Zurück zum Zitat Gjoreski, H., Gams, M., Lutrek, M.: Human activity recognition: from controlled lab experiments to competitive live evaluation. In: IEEE International Conference on Data Mining Workshop (ICDMW), pp. 139–145 (2015) Gjoreski, H., Gams, M., Lutrek, M.: Human activity recognition: from controlled lab experiments to competitive live evaluation. In: IEEE International Conference on Data Mining Workshop (ICDMW), pp. 139–145 (2015)
17.
Zurück zum Zitat Hammerla, N.Y., Halloran, S., Plotz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables (2016) Hammerla, N.Y., Halloran, S., Plotz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables (2016)
18.
Zurück zum Zitat Hardjianto, M., Istiyanto, J.E., Putra, A.E.: Fall detection on humans using threshold method based on smartphone accelerometer data (2017) Hardjianto, M., Istiyanto, J.E., Putra, A.E.: Fall detection on humans using threshold method based on smartphone accelerometer data (2017)
19.
Zurück zum Zitat Janko, V., Gjoreski, M., Slapničar, G., Mlakar, M., Reščič, N., Bizjak, J., Drobnič, V., Marinko, M., Mlakar, N., Gams, M., Luštrek, M.: Winning the Sussex-Huawei locomotion-transportation recognition challenge. In: Kawaguchi, N., Nishio, N., Roggen, D., Inoue, S., Pirttikangas, S., Van Laerhoven, K. (eds.) Human Activity Sensing. Springer Series in Adaptive Environments. Springer, Cham (2019)CrossRef Janko, V., Gjoreski, M., Slapničar, G., Mlakar, M., Reščič, N., Bizjak, J., Drobnič, V., Marinko, M., Mlakar, N., Gams, M., Luštrek, M.: Winning the Sussex-Huawei locomotion-transportation recognition challenge. In: Kawaguchi, N., Nishio, N., Roggen, D., Inoue, S., Pirttikangas, S., Van Laerhoven, K. (eds.) Human Activity Sensing. Springer Series in Adaptive Environments. Springer, Cham (2019)CrossRef
20.
Zurück zum Zitat Kozina, S., Gjoreski, H., Gams, M., Luštrek, M.: Three-layer activity recognition combining domain knowledge and meta- classification. JMBE 33(4), 406–414 (2013) Kozina, S., Gjoreski, H., Gams, M., Luštrek, M.: Three-layer activity recognition combining domain knowledge and meta- classification. JMBE 33(4), 406–414 (2013)
21.
Zurück zum Zitat Lai, C., Huang, Y.M., Park, J.H., Chao, H.C.: Adaptive body posture analysis for elderly-falling detection with multisensors. IEEE Intell. Syst. 25, 2–11 (2010)CrossRef Lai, C., Huang, Y.M., Park, J.H., Chao, H.C.: Adaptive body posture analysis for elderly-falling detection with multisensors. IEEE Intell. Syst. 25, 2–11 (2010)CrossRef
22.
Zurück zum Zitat Lustrek, M., Gjoreski, H., Vega, N.G., Kozina, S., Cvetkovic, B., Mirchevska, V., Gams, M.: Fall detection using location sensors and accelerometers. IEEE Pervas. Comput. 14(4), 72–79 (2015)CrossRef Lustrek, M., Gjoreski, H., Vega, N.G., Kozina, S., Cvetkovic, B., Mirchevska, V., Gams, M.: Fall detection using location sensors and accelerometers. IEEE Pervas. Comput. 14(4), 72–79 (2015)CrossRef
23.
Zurück zum Zitat Miguel, K., Brunete, A., Hernando, M., Gambao, E.: Home camera-based fall detection system for the elderly. Sensors (2017) Miguel, K., Brunete, A., Hernando, M., Gambao, E.: Home camera-based fall detection system for the elderly. Sensors (2017)
24.
Zurück zum Zitat Putra, I., Brusey, J., Gaura, E., Vesilo, R.: An event-triggered machine learning approach for accelerometer-based fall detection (2017a)CrossRef Putra, I., Brusey, J., Gaura, E., Vesilo, R.: An event-triggered machine learning approach for accelerometer-based fall detection (2017a)CrossRef
25.
Zurück zum Zitat Putra, P., Brusey, J., Gaura, E., Vesilo, R.: An event-triggered machine learning approach for accelerometer-based fall detection (2017b)CrossRef Putra, P., Brusey, J., Gaura, E., Vesilo, R.: An event-triggered machine learning approach for accelerometer-based fall detection (2017b)CrossRef
26.
Zurück zum Zitat Ren, L., Shi, W.: Chameleon: Personalised and adaptive fall detection of elderly people in home-based environments (2016)CrossRef Ren, L., Shi, W.: Chameleon: Personalised and adaptive fall detection of elderly people in home-based environments (2016)CrossRef
27.
Zurück zum Zitat Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)CrossRef Ronao, C.A., Cho, S.-B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)CrossRef
28.
Zurück zum Zitat Tinetti, M.E., Williams, C.S.: Falls, injuries due to falls, and the risk of admission to a nursing home. The New England J Medicine 337, 1279–1284 (1997)CrossRef Tinetti, M.E., Williams, C.S.: Falls, injuries due to falls, and the risk of admission to a nursing home. The New England J Medicine 337, 1279–1284 (1997)CrossRef
29.
Zurück zum Zitat Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. Eur. Conf. Mach. Learn. 9, 128–137 (1996) Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes. Eur. Conf. Mach. Learn. 9, 128–137 (1996)
30.
Zurück zum Zitat Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM transactions on intelligent systems and technology (2011)CrossRef Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM transactions on intelligent systems and technology (2011)CrossRef
31.
Zurück zum Zitat Williams, G., Doughty, K., Cameron, K., Bradley D.A: A smart fall and activity monitor for telecare applications. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1998) Williams, G., Doughty, K., Cameron, K., Bradley D.A: A smart fall and activity monitor for telecare applications. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1998)
33.
Zurück zum Zitat Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemed. Appl. (2015) Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemed. Appl. (2015)
34.
Zurück zum Zitat Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li1, Z.: A review on human activity recognition using vision-based method. J Healthcare Eng (2017) Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li1, Z.: A review on human activity recognition using vision-based method. J Healthcare Eng (2017)
Metadaten
Titel
Wearable Sensors Data-Fusion and Machine-Learning Method for Fall Detection and Activity Recognition
verfasst von
Hristijan Gjoreski
Simon Stankoski
Ivana Kiprijanovska
Anastasija Nikolovska
Natasha Mladenovska
Marija Trajanoska
Bojana Velichkovska
Martin Gjoreski
Mitja Luštrek
Matjaž Gams
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-38748-8_4

Neuer Inhalt