Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Processing Letters 3/2022

06.01.2022

Wearables and Detection of Falls: A Comparison of Machine Learning Methods and Sensors Positioning

verfasst von: Arthur B. A. Pinto, Gilda A. de Assis, Luiz C. B. Torres, Thomas Beltrame, Diana M. G. Domingues

Erschienen in: Neural Processing Letters | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Wearable sensors have many applications to provide assistance for older adults. We aimed to identify the best combination of machine learning algorithms and body regions to attach one wearable for real-time falls detection from a public dataset where volunteers performed daily activities and simulated falls. Accuracy and comfort of the combination of wearables and algorithms were assessed. Raw data from the accelerometer and gyroscope were used for both training and testing stages. We evaluated the confusion matrix between all wearables at each of the different body regions (Ankle, Right Pocket, Belt, Neck, and Wrist) for the following machine learning algorithms: Multilayer Perceptron (MLP), Random Forest, XGBoost, and Long Short Term Memory (LSTM) deep neural network. The accuracy was compared by ANOVA two-way repeated measures statistical test. This work has two main technical contributions. First, our results demonstrated the highest accuracy in identifying falls when the sensors were positioned on the neck or ankle. Second, when the machine learning algorithms to detect fall was compared, LSTM deep neural network and Random Forest showed statistically higher accuracy than MLP and XGBoost. Besides, a comfort analysis based on the literature concluded that neck and wrist are the most comfortable regions to wear wearables.
Literatur
14.
Zurück zum Zitat Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794 Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 785–794
15.
Zurück zum Zitat Tin Kam Ho (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844 CrossRef Tin Kam Ho (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844 CrossRef
16.
Zurück zum Zitat Kocyigit Y, Alkan A, Erol H (2008) Classification of EEG recordings by using fast independent component analysis and artificial neural network. J Med Syst 32(1):17–20 CrossRef Kocyigit Y, Alkan A, Erol H (2008) Classification of EEG recordings by using fast independent component analysis and artificial neural network. J Med Syst 32(1):17–20 CrossRef
17.
Zurück zum Zitat McClelland JL, Rumelhart DE, Group PR et al. (1986) Parallel distributed processing. Explor Microstruct Cogn 2:216–271 McClelland JL, Rumelhart DE, Group PR et al. (1986) Parallel distributed processing. Explor Microstruct Cogn 2:216–271
18.
Zurück zum Zitat Breiman L (1999) Radnom forests–random features. Technical Report vol 567, University of California, Berkeley CA, USA Breiman L (1999) Radnom forests–random features. Technical Report vol 567, University of California, Berkeley CA, USA
21.
Zurück zum Zitat Sak H, Senior A, Beaufays F (2014) Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:​1402.​1128 Sak H, Senior A, Beaufays F (2014) Long short-term memory based recurrent neural network architectures for large vocabulary speech recognition. arXiv preprint arXiv:​1402.​1128
28.
Zurück zum Zitat Vaswani A, Shazeer N Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds)Advances in neural information processing systems, vol 30, Curran Associates, Inc., pp 5998–6008 Vaswani A, Shazeer N Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds)Advances in neural information processing systems, vol 30, Curran Associates, Inc., pp 5998–6008
Metadaten
Titel
Wearables and Detection of Falls: A Comparison of Machine Learning Methods and Sensors Positioning
verfasst von
Arthur B. A. Pinto
Gilda A. de Assis
Luiz C. B. Torres
Thomas Beltrame
Diana M. G. Domingues
Publikationsdatum
06.01.2022
Verlag
Springer US
Erschienen in
Neural Processing Letters / Ausgabe 3/2022
Print ISSN: 1370-4621
Elektronische ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10724-2

Weitere Artikel der Ausgabe 3/2022

Neural Processing Letters 3/2022 Zur Ausgabe