Skip to main content

2023 | OriginalPaper | Buchkapitel

Web Application Based on Sentinel-2 Satellite Imagery for Water Stress Detection and Monitoring in Poplar Plantations

verfasst von : Y. J. Arhrib, S. Francini, G. D’Amico, F. Castedo-Dorado, J. Garnica-López, M. F. Álvarez-Taboada

Erschienen in: Global Challenges for a Sustainable Society

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Clonal poplar plantations under conditions of water stress are more susceptible to pests and diseases, in addition to having lower growth rates than in optimal conditions of water availability. Likewise, water management is essential to guarantee responsible and sustainable wood production, with a minimum water footprint. The aim of this paper was to develop a user-friendly online system based on satellite imagery to detect and monitor damages caused by water stress in poplar plantations, so it could be used by the poplar owners/managers without previous knowledge of remote sensing. PoplarAlert is a free online web application which was developed using Sentinel-2 MSI imagery, Google Earth Engine, Python. It allows the user to obtain, through the application, clear and immediate information on the probability that damage due to water stress has occurred (in- formation in the form of an image, graph, vector or table). In addition, this tool allows the temporary reconstruction of a damage that is detected (to go back in time and try to identify the trigger). The results of testing it in two different plantations confirmed the capability of PoplarAlert to detect water stress once there was some leaf loss and/or drier/yellower leaves still on the tree (previously or during the leaf loss).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gómez, C., Alejandro, P., Hermosilla, T., Montes, F., Pascual, C., Ruiz, L., Álvarez- Taboada, F., Tanase, M., Valbuena, R.: Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Syst. 28(1), eR001 (2019). https://doi.org/10.5424/fs/2019281-14221 Gómez, C., Alejandro, P., Hermosilla, T., Montes, F., Pascual, C., Ruiz, L., Álvarez- Taboada, F., Tanase, M., Valbuena, R.: Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Syst. 28(1), eR001 (2019). https://​doi.​org/​10.​5424/​fs/​2019281-14221
2.
Zurück zum Zitat Álvarez-Taboada, F., Sanz-Ablanedo, E., Rodríguez Pérez, J.R., Castedo-Dorado, F., Lombardero, M.J.: Multi-sensor and multi-scale system for monitoring forest health in Pinus radiata stands defoliated by Lymantria dispar in NW Spain. In: Proceedings of the ForestSAT Open Conference System, Riva del Garda, Italia (2014) Álvarez-Taboada, F., Sanz-Ablanedo, E., Rodríguez Pérez, J.R., Castedo-Dorado, F., Lombardero, M.J.: Multi-sensor and multi-scale system for monitoring forest health in Pinus radiata stands defoliated by Lymantria dispar in NW Spain. In: Proceedings of the ForestSAT Open Conference System, Riva del Garda, Italia (2014)
4.
Zurück zum Zitat Mazzia, V., Khaliq, A., Chiaberge, M.: Improvement in land cover and crop classification based on temporal features learning from Sentinel-2 data using recurrent-convolutional neural network (R-CNN). Appl. Sci. 10, 1–23 (2022) Mazzia, V., Khaliq, A., Chiaberge, M.: Improvement in land cover and crop classification based on temporal features learning from Sentinel-2 data using recurrent-convolutional neural network (R-CNN). Appl. Sci. 10, 1–23 (2022)
5.
Zurück zum Zitat Yu, X., Wu, X., Luo, C., Ren, P.: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience Remote Sens. 54, 741–758 (2017)CrossRef Yu, X., Wu, X., Luo, C., Ren, P.: Deep learning in remote sensing scene classification: a data augmentation enhanced convolutional neural network framework. GIScience Remote Sens. 54, 741–758 (2017)CrossRef
6.
Zurück zum Zitat Hu, Y., Zhang, Q., Zhang, Y., Yan, H.: A deep convolution neural network method for land cover mapping: a case study of Qinhuangdao, China. IEEE Trans. Geosci. Remote Sens. 10, 1–17 (2018)CrossRef Hu, Y., Zhang, Q., Zhang, Y., Yan, H.: A deep convolution neural network method for land cover mapping: a case study of Qinhuangdao, China. IEEE Trans. Geosci. Remote Sens. 10, 1–17 (2018)CrossRef
7.
Zurück zum Zitat D’Amico, G., Francini, S., Giannetti, F., Vangi, E., Travaglini, D., Chianucci, F., Mattioli, W., Grotti, M., Puletti, N., Corona, P., Chirici, G.: A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GIScience Remote Sens. 58(8), 1352–1368 (2021) D’Amico, G., Francini, S., Giannetti, F., Vangi, E., Travaglini, D., Chianucci, F., Mattioli, W., Grotti, M., Puletti, N., Corona, P., Chirici, G.: A deep learning approach for automatic mapping of poplar plantations using Sentinel-2 imagery. GIScience Remote Sens. 58(8), 1352–1368 (2021)
8.
Zurück zum Zitat Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N.: Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289–298 (1996)CrossRef Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N.: Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289–298 (1996)CrossRef
11.
Zurück zum Zitat Pacheco-Pascagaza, A.M., Gou, Y., Louis, V., Roberts, J.F., Rodríguez-Veiga, P., da Conceição Bispo, P., Espírito-Santo, F.D.B., Robb, C., Upton, C., Galindo, G., Cabrera, E., Pachón Cendales, I.P., Castillo Santiago, M.A., Carrillo Negrete, O., Meneses, C., Iñiguez, M., Balzter, H.: Near Real-time change detection system using Sentinel-2 and machine learning: a test for Mexican and Colombian forests. Remote Sens. (14), 707 (2022). https://doi.org/10.3390/rs14030707 Pacheco-Pascagaza, A.M., Gou, Y., Louis, V., Roberts, J.F., Rodríguez-Veiga, P., da Conceição Bispo, P., Espírito-Santo, F.D.B., Robb, C., Upton, C., Galindo, G., Cabrera, E., Pachón Cendales, I.P., Castillo Santiago, M.A., Carrillo Negrete, O., Meneses, C., Iñiguez, M., Balzter, H.: Near Real-time change detection system using Sentinel-2 and machine learning: a test for Mexican and Colombian forests. Remote Sens. (14), 707 (2022). https://​doi.​org/​10.​3390/​rs14030707
14.
Zurück zum Zitat Verbesselt, J., Zeileis, A., Herold, M.: Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 123, 98–108 (2012)CrossRef Verbesselt, J., Zeileis, A., Herold, M.: Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 123, 98–108 (2012)CrossRef
Metadaten
Titel
Web Application Based on Sentinel-2 Satellite Imagery for Water Stress Detection and Monitoring in Poplar Plantations
verfasst von
Y. J. Arhrib
S. Francini
G. D’Amico
F. Castedo-Dorado
J. Garnica-López
M. F. Álvarez-Taboada
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-25840-4_38