Skip to main content

2025 | OriginalPaper | Buchkapitel

Weighted Linear Regression with Optimized Gap for Learned Index

verfasst von : Hongtao Sun, Libin Zheng, Jian Yin

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learned index is a novel index structure and changed the way we treat the traditional field of DBMS index. It views index as models and uses a learning-based approach to fit the distribution of stored data. The models input the key and output the predicted location of the target keys. To achieve higher query throughput, we propose WELGOR. We train the linear regression model with priority of the keys. To improve the mapping ability of the model, we use a hybrid model which adds the design of a simple linear model to better indexing keys. Besides, we also optimize the space allocation for gap design in node while achieving comparable throughput. Experiments show that WELGOR achieves 23% to 93% improvement in throughput compared with state-of-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 799–812 (2020) Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 799–812 (2020)
6.
Zurück zum Zitat Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090 (2011) Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090 (2011)
7.
Zurück zum Zitat Ding, J., et al.: Alex: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969–984 (2020) Ding, J., et al.: Alex: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969–984 (2020)
8.
Zurück zum Zitat Ding, J., Nathan, V., Alizadeh, M., Kraska, T.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB Endowment 14(2), 74–86 (2020)CrossRef Ding, J., Nathan, V., Alizadeh, M., Kraska, T.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB Endowment 14(2), 74–86 (2020)CrossRef
9.
Zurück zum Zitat Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endowment 13(8), 1162–1175 (2020)CrossRef Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endowment 13(8), 1162–1175 (2020)CrossRef
10.
Zurück zum Zitat Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a data-aware index structure. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1189–1206 (2019) Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a data-aware index structure. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1189–1206 (2019)
11.
Zurück zum Zitat Ge, J., et al.: SALI: a scalable adaptive learned index framework based on probability models. Proc. ACM Manag. Data 1(4), 1–25 (2023)CrossRef Ge, J., et al.: SALI: a scalable adaptive learned index framework based on probability models. Proc. ACM Manag. Data 1(4), 1–25 (2023)CrossRef
12.
Zurück zum Zitat Kipf, A., et al.: RadixSpline: a single-pass learned index. In: Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, pp. 1–5 (2020) Kipf, A., et al.: RadixSpline: a single-pass learned index. In: Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, pp. 1–5 (2020)
13.
Zurück zum Zitat Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018) Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018)
14.
Zurück zum Zitat Li, P., Hua, Y., Jia, J., Zuo, P.: FINEdex: a fine-grained learned index scheme for scalable and concurrent memory systems. Proc. VLDB Endowment 15(2), 321–334 (2021)CrossRef Li, P., Hua, Y., Jia, J., Zuo, P.: FINEdex: a fine-grained learned index scheme for scalable and concurrent memory systems. Proc. VLDB Endowment 15(2), 321–334 (2021)CrossRef
15.
Zurück zum Zitat Li, P., Lu, H., Zhu, R., Ding, B., Yang, L., Pan, G.: DILI: A distribution-driven learned index. arXiv preprint arXiv:2304.08817 (2023) Li, P., Lu, H., Zhu, R., Ding, B., Yang, L., Pan, G.: DILI: A distribution-driven learned index. arXiv preprint arXiv:​2304.​08817 (2023)
16.
Zurück zum Zitat Lu, B., Ding, J., Lo, E., Minhas, U.F., Wang, T.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endowment 15(3), 597–610 (2021)CrossRef Lu, B., Ding, J., Lo, E., Minhas, U.F., Wang, T.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endowment 15(3), 597–610 (2021)CrossRef
17.
Zurück zum Zitat Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 183–196 (2012) Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 183–196 (2012)
18.
Zurück zum Zitat Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 985–1000 (2020) Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 985–1000 (2020)
19.
Zurück zum Zitat Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endowment 11(11), 1661–1673 (2018)CrossRef Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endowment 11(11), 1661–1673 (2018)CrossRef
Metadaten
Titel
Weighted Linear Regression with Optimized Gap for Learned Index
verfasst von
Hongtao Sun
Libin Zheng
Jian Yin
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_2