Skip to main content
Erschienen in: International Journal of Computer Vision 2/2017

18.07.2016

Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision

verfasst von: Shuhang Gu, Qi Xie, Deyu Meng, Wangmeng Zuo, Xiangchu Feng, Lei Zhang

Erschienen in: International Journal of Computer Vision | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a convex relaxation of the rank minimization model, the nuclear norm minimization (NNM) problem has been attracting significant research interest in recent years. The standard NNM regularizes each singular value equally, composing an easily calculated convex norm. However, this restricts its capability and flexibility in dealing with many practical problems, where the singular values have clear physical meanings and should be treated differently. In this paper we study the weighted nuclear norm minimization (WNNM) problem, which adaptively assigns weights on different singular values. As the key step of solving general WNNM models, the theoretical properties of the weighted nuclear norm proximal (WNNP) operator are investigated. Albeit nonconvex, we prove that WNNP is equivalent to a standard quadratic programming problem with linear constrains, which facilitates solving the original problem with off-the-shelf convex optimization solvers. In particular, when the weights are sorted in a non-descending order, its optimal solution can be easily obtained in closed-form. With WNNP, the solving strategies for multiple extensions of WNNM, including robust PCA and matrix completion, can be readily constructed under the alternating direction method of multipliers paradigm. Furthermore, inspired by the reweighted sparse coding scheme, we present an automatic weight setting method, which greatly facilitates the practical implementation of WNNM. The proposed WNNM methods achieve state-of-the-art performance in typical low level vision tasks, including image denoising, background subtraction and image inpainting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
A general proximal operator is defined on a convex problem to guarantee an accurate projection. Although the problem here is nonconvex, we can strictly prove that it is equivalent to a convex quadratic programing problem in Sect. 3. We thus also call it a proximal operator throughout the paper for convenience.
 
8
The color image was used in previous work (Portilla 2004).
 
13
The color versions of images #3, #5, #6, #7, #9, #11 are used in this MC experiment.
 
Literatur
Zurück zum Zitat Arias, P., Facciolo, G., Caselles, V., & Sapiro, G. (2011). A variational framework for exemplar-based image inpainting. International Journal of computer Vision, 93(3), 319–347.MathSciNetCrossRefMATH Arias, P., Facciolo, G., Caselles, V., & Sapiro, G. (2011). A variational framework for exemplar-based image inpainting. International Journal of computer Vision, 93(3), 319–347.MathSciNetCrossRefMATH
Zurück zum Zitat Babacan, S. D., Luessi, M., Molina, R., & Katsaggelos, A. K. (2012). Sparse bayesian methods for low-rank matrix estimation. IEEE Transactions on Signal Processing, 60(8), 3964–3977.MathSciNetCrossRef Babacan, S. D., Luessi, M., Molina, R., & Katsaggelos, A. K. (2012). Sparse bayesian methods for low-rank matrix estimation. IEEE Transactions on Signal Processing, 60(8), 3964–3977.MathSciNetCrossRef
Zurück zum Zitat Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transaction on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.CrossRef Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transaction on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.CrossRef
Zurück zum Zitat Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In CVPR. Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In CVPR.
Zurück zum Zitat Buades, A., Coll, B., & Morel, J. M. (2008). Nonlocal image and movie denoising. International Journal of Computer Vision, 76(2), 123–139.CrossRef Buades, A., Coll, B., & Morel, J. M. (2008). Nonlocal image and movie denoising. International Journal of Computer Vision, 76(2), 123–139.CrossRef
Zurück zum Zitat Buchanan, A.M., & Fitzgibbon, A.W, (2005). Damped newton algorithms for matrix factorization with missing data. In CVPR. Buchanan, A.M., & Fitzgibbon, A.W, (2005). Damped newton algorithms for matrix factorization with missing data. In CVPR.
Zurück zum Zitat Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982.MathSciNetCrossRefMATH Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982.MathSciNetCrossRefMATH
Zurück zum Zitat Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6), 717–772.MathSciNetCrossRefMATH Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6), 717–772.MathSciNetCrossRefMATH
Zurück zum Zitat Candès, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted \(l_1\) minimization. Journal of Fourier Analysis and Applications, 14(5–6), 877–905.MathSciNetCrossRefMATH Candès, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted \(l_1\) minimization. Journal of Fourier Analysis and Applications, 14(5–6), 877–905.MathSciNetCrossRefMATH
Zurück zum Zitat Chan, T. F., & Shen, J. J. (2005). Image processing and analysis: Variational, PDE, wavelet, and stochastic methods. Philadelphia: SIAM Press.CrossRefMATH Chan, T. F., & Shen, J. J. (2005). Image processing and analysis: Variational, PDE, wavelet, and stochastic methods. Philadelphia: SIAM Press.CrossRefMATH
Zurück zum Zitat Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14(10), 707–710.CrossRef Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14(10), 707–710.CrossRef
Zurück zum Zitat Chartrand, R. (2012). Nonconvex splitting for regularized low-rank+ sparse decomposition. IEEE Transaction on Signal Processing, 60(11), 5810–5819.MathSciNetCrossRef Chartrand, R. (2012). Nonconvex splitting for regularized low-rank+ sparse decomposition. IEEE Transaction on Signal Processing, 60(11), 5810–5819.MathSciNetCrossRef
Zurück zum Zitat Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transaction on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transaction on Image Processing, 16(8), 2080–2095.MathSciNetCrossRef
Zurück zum Zitat Dahl, J., Hansen, P. C., Jensen, S. H., & Jensen, T. L. (2010). Algorithms and software for total variation image reconstruction via first-order methods. Numerical Algorithms, 53(1), 67–92.MathSciNetCrossRefMATH Dahl, J., Hansen, P. C., Jensen, S. H., & Jensen, T. L. (2010). Algorithms and software for total variation image reconstruction via first-order methods. Numerical Algorithms, 53(1), 67–92.MathSciNetCrossRefMATH
Zurück zum Zitat De La Torre, F., & Black, M. J. (2003). A framework for robust subspace learning. International Journal of Computer Vision, 54(1–3), 117–142.CrossRefMATH De La Torre, F., & Black, M. J. (2003). A framework for robust subspace learning. International Journal of Computer Vision, 54(1–3), 117–142.CrossRefMATH
Zurück zum Zitat Ding, X., He, L., & Carin, L. (2011). Bayesian robust principal component analysis. IEEE Transactions on Image Processing, 20(12), 3419–3430.MathSciNetCrossRef Ding, X., He, L., & Carin, L. (2011). Bayesian robust principal component analysis. IEEE Transactions on Image Processing, 20(12), 3419–3430.MathSciNetCrossRef
Zurück zum Zitat Dong, W., Zhang, L., & Shi, G. (2011). Centralized sparse representation for image restoration. In ICCV. Dong, W., Zhang, L., & Shi, G. (2011). Centralized sparse representation for image restoration. In ICCV.
Zurück zum Zitat Dong, W., Shi, G., & Li, X. (2013). Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Transaction on Image Processing, 22(2), 700–711.MathSciNetCrossRef Dong, W., Shi, G., & Li, X. (2013). Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Transaction on Image Processing, 22(2), 700–711.MathSciNetCrossRef
Zurück zum Zitat Dong, W., Shi, G., Li, X., Ma, Y., & Huang, F. (2014). Compressive sensing via nonlocal low-rank regularization. IEEE Transaction on Image Processing, 23(8), 3618–3632.MathSciNetCrossRef Dong, W., Shi, G., Li, X., Ma, Y., & Huang, F. (2014). Compressive sensing via nonlocal low-rank regularization. IEEE Transaction on Image Processing, 23(8), 3618–3632.MathSciNetCrossRef
Zurück zum Zitat Eriksson, A., & Van Den Hengel, A. (2010). Efficient computation of robust low-rank matrix approximations in the presence of missing data using the \(l_1\) norm. In CVPR. Eriksson, A., & Van Den Hengel, A. (2010). Efficient computation of robust low-rank matrix approximations in the presence of missing data using the \(l_1\) norm. In CVPR.
Zurück zum Zitat Fazel, M. (2002). Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford University. Fazel, M. (2002). Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford University.
Zurück zum Zitat Fazel, M., Hindi, H., & Boyd, S.P. (2001). A rank minimization heuristic with application to minimum order system approximation. In American Control Conference. (ACC). Fazel, M., Hindi, H., & Boyd, S.P. (2001). A rank minimization heuristic with application to minimum order system approximation. In American Control Conference. (ACC).
Zurück zum Zitat Gu, S., Zhang, L., Zuo, W., & Feng, X. (2014). Weighted nuclear norm minimization with application to image denoising. In CVPR. Gu, S., Zhang, L., Zuo, W., & Feng, X. (2014). Weighted nuclear norm minimization with application to image denoising. In CVPR.
Zurück zum Zitat Jain, P., Netrapalli, P., & Sanghavi, S. (2013). Low-rank matrix completion using alternating minimization. In ACM symposium on theory of computing. Jain, P., Netrapalli, P., & Sanghavi, S. (2013). Low-rank matrix completion using alternating minimization. In ACM symposium on theory of computing.
Zurück zum Zitat Ji, H., Liu, C., Shen, Z., & Xu, Y. (2010). Robust video denoising using low rank matrix completion. In CVPR. Ji, H., Liu, C., Shen, Z., & Xu, Y. (2010). Robust video denoising using low rank matrix completion. In CVPR.
Zurück zum Zitat Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. In ICML (pp. 457–464). Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. In ICML (pp. 457–464).
Zurück zum Zitat Ke, Q., & Kanade, T. (2005). Robust \(l_1\) norm factorization in the presence of outliers and missing data by alternative convex programming. In CVPR. Ke, Q., & Kanade, T. (2005). Robust \(l_1\) norm factorization in the presence of outliers and missing data by alternative convex programming. In CVPR.
Zurück zum Zitat Kwak, N. (2008). Principal component analysis based on l1-norm maximization. IEEE Transaction on Pattern Analysis and Machine Intelligence, 30(9), 1672–1680.CrossRef Kwak, N. (2008). Principal component analysis based on l1-norm maximization. IEEE Transaction on Pattern Analysis and Machine Intelligence, 30(9), 1672–1680.CrossRef
Zurück zum Zitat Levin, A., & Nadler, B. (2011). Natural image denoising: Optimality and inherent bounds. In CVPR. Levin, A., & Nadler, B. (2011). Natural image denoising: Optimality and inherent bounds. In CVPR.
Zurück zum Zitat Levin, A., Nadler, B., Durand, F., & Freeman, W.T. (2012). Patch complexity, finite pixel correlations and optimal denoising. In ECCV. Levin, A., Nadler, B., Durand, F., & Freeman, W.T. (2012). Patch complexity, finite pixel correlations and optimal denoising. In ECCV.
Zurück zum Zitat Li, L., Huang, W., Gu, I. H., & Tian, Q. (2004). Statistical modeling of complex backgrounds for foreground object detection. IEEE Transaction on Image Processing, 13(11), 1459–1472.CrossRef Li, L., Huang, W., Gu, I. H., & Tian, Q. (2004). Statistical modeling of complex backgrounds for foreground object detection. IEEE Transaction on Image Processing, 13(11), 1459–1472.CrossRef
Zurück zum Zitat Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., & Ma, Y. (2009). Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., & Ma, Y. (2009). Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.
Zurück zum Zitat Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating direction method with adaptive penalty for low-rank representation. In NIPS. Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating direction method with adaptive penalty for low-rank representation. In NIPS.
Zurück zum Zitat Lin, Z., Liu, R., & Li, H. (2015). Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. Machine Learning, 99(2), 287–325.MathSciNetCrossRefMATH Lin, Z., Liu, R., & Li, H. (2015). Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. Machine Learning, 99(2), 287–325.MathSciNetCrossRefMATH
Zurück zum Zitat Liu, G., Lin, Z., Yan, S., Sun, J., Yu, & Y., Ma, Y. (2010). Robust subspace segmentation by low-rank representation. In ICML. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, & Y., Ma, Y. (2010). Robust subspace segmentation by low-rank representation. In ICML.
Zurück zum Zitat Liu, R., Lin, Z., De la, Torre, F., & Su, Z. (2012). Fixed-rank representation for unsupervised visual learning. In CVPR. Liu, R., Lin, Z., De la, Torre, F., & Su, Z. (2012). Fixed-rank representation for unsupervised visual learning. In CVPR.
Zurück zum Zitat Lu, C., Tang, J., Yan, S., & Lin, Z. (2014a). Generalized nonconvex nonsmooth low-rank minimization. In CVPR. Lu, C., Tang, J., Yan, S., & Lin, Z. (2014a). Generalized nonconvex nonsmooth low-rank minimization. In CVPR.
Zurück zum Zitat Lu, C., Zhu, C., Xu, C., Yan, S., & Lin, Z. (2014b). Generalized singular value thresholding. arXiv preprint arXiv:1412.2231. Lu, C., Zhu, C., Xu, C., Yan, S., & Lin, Z. (2014b). Generalized singular value thresholding. arXiv preprint arXiv:​1412.​2231.
Zurück zum Zitat Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009). Non-local sparse models for image restoration. In ICCV. Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009). Non-local sparse models for image restoration. In ICCV.
Zurück zum Zitat Meng, D., & Torre, F.D.L. (2013). Robust matrix factorization with unknown noise. In ICCV. Meng, D., & Torre, F.D.L. (2013). Robust matrix factorization with unknown noise. In ICCV.
Zurück zum Zitat Mnih, A.,&Salakhutdinov, R. (2007). Probabilistic matrix factorization. In NIPS. Mnih, A.,&Salakhutdinov, R. (2007). Probabilistic matrix factorization. In NIPS.
Zurück zum Zitat Mohan, K., & Fazel, M. (2012). Iterative reweighted algorithms for matrix rank minimization. The Journal of Machine Learning Research, 13(1), 3441–3473.MathSciNetMATH Mohan, K., & Fazel, M. (2012). Iterative reweighted algorithms for matrix rank minimization. The Journal of Machine Learning Research, 13(1), 3441–3473.MathSciNetMATH
Zurück zum Zitat Moreau, J. J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France, 93, 273–299.MathSciNetMATH Moreau, J. J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France, 93, 273–299.MathSciNetMATH
Zurück zum Zitat Mu, Y., Dong, J., Yuan, X., & Yan, S. (2011). Accelerated low-rank visual recovery by random projection. In CVPR. Mu, Y., Dong, J., Yuan, X., & Yan, S. (2011). Accelerated low-rank visual recovery by random projection. In CVPR.
Zurück zum Zitat Nie, F., Huang, H., & Ding, C.H. (2012). Low-rank matrix recovery via efficient schatten p-norm minimization. In AAAI. Nie, F., Huang, H., & Ding, C.H. (2012). Low-rank matrix recovery via efficient schatten p-norm minimization. In AAAI.
Zurück zum Zitat Oh, T.H., Kim, H., Tai, Y.W., Bazin, J.C., & Kweon, I.S. (2013). Partial sum minimization of singular values in rpca for low-level vision. In ICCV. Oh, T.H., Kim, H., Tai, Y.W., Bazin, J.C., & Kweon, I.S. (2013). Partial sum minimization of singular values in rpca for low-level vision. In ICCV.
Zurück zum Zitat Peng, Y., Ganesh, A., Wright, J., Xu, W., & Ma, Y. (2012). Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(11), 2233–2246.CrossRef Peng, Y., Ganesh, A., Wright, J., Xu, W., & Ma, Y. (2012). Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(11), 2233–2246.CrossRef
Zurück zum Zitat Portilla, J. (2004). Blind non-white noise removal in images using gaussian scale. Citeseer: In Proceedings of the IEEE benelux signal processing symposium. Portilla, J. (2004). Blind non-white noise removal in images using gaussian scale. Citeseer: In Proceedings of the IEEE benelux signal processing symposium.
Zurück zum Zitat Rhea, D. (2011). The case of equality in the von Neumann trace inequality. Preprint. Rhea, D. (2011). The case of equality in the von Neumann trace inequality. Preprint.
Zurück zum Zitat Roth, S., & Black, M. J. (2009). Fields of experts. International Journal of Computer Vision, 82(2), 205–229.CrossRef Roth, S., & Black, M. J. (2009). Fields of experts. International Journal of Computer Vision, 82(2), 205–229.CrossRef
Zurück zum Zitat Ruslan, S., & Srebro, N. (2010). Collaborative filtering in a non-uniform world: Learning with the weighted trace norm. In NIPS. Ruslan, S., & Srebro, N. (2010). Collaborative filtering in a non-uniform world: Learning with the weighted trace norm. In NIPS.
Zurück zum Zitat She, Y. (2012). An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors. Computational Statistics & Data Analysis, 56(10), 2976–2990.MathSciNetCrossRefMATH She, Y. (2012). An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors. Computational Statistics & Data Analysis, 56(10), 2976–2990.MathSciNetCrossRefMATH
Zurück zum Zitat Srebro, N., & Jaakkola, T., et al. (2003). Weighted low-rank approximations. In ICML. Srebro, N., & Jaakkola, T., et al. (2003). Weighted low-rank approximations. In ICML.
Zurück zum Zitat Srebro, N., Rennie, J., & Jaakkola, T.S. (2004). Maximum-margin matrix factorization. In NIPS. Srebro, N., Rennie, J., & Jaakkola, T.S. (2004). Maximum-margin matrix factorization. In NIPS.
Zurück zum Zitat Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.MathSciNetCrossRefMATH Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.MathSciNetCrossRefMATH
Zurück zum Zitat Wang, N., & Yeung, D.Y. (2013). Bayesian robust matrix factorization for image and video processing. In ICCV. Wang, N., & Yeung, D.Y. (2013). Bayesian robust matrix factorization for image and video processing. In ICCV.
Zurück zum Zitat Wang, S., Zhang, L.,&Y, L. (2012). Nonlocal spectral prior model for low-level vision. In ACCV. Wang, S., Zhang, L.,&Y, L. (2012). Nonlocal spectral prior model for low-level vision. In ACCV.
Zurück zum Zitat Wright, J., Peng, Y., Ma, Y., Ganesh, A., & Rao, S. (2009). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS. Wright, J., Peng, Y., Ma, Y., Ganesh, A., & Rao, S. (2009). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS.
Zurück zum Zitat Zhang, D., Hu, Y., Ye, J., Li, X., & He X (2012a). Matrix completion by truncated nuclear norm regularization. In CVPR. Zhang, D., Hu, Y., Ye, J., Li, X., & He X (2012a). Matrix completion by truncated nuclear norm regularization. In CVPR.
Zurück zum Zitat Zhang, Z., Ganesh, A., Liang, X., & Ma, Y. (2012b). Tilt: transform invariant low-rank textures. International Journal of Computer Vision, 99(1), 1–24.MathSciNetCrossRefMATH Zhang, Z., Ganesh, A., Liang, X., & Ma, Y. (2012b). Tilt: transform invariant low-rank textures. International Journal of Computer Vision, 99(1), 1–24.MathSciNetCrossRefMATH
Zurück zum Zitat Zhao, Q., Meng, D., Xu, Z., Zuo, W., & Zhang, L. (2014) Robust principal component analysis with complex noise. In ICML. Zhao, Q., Meng, D., Xu, Z., Zuo, W., & Zhang, L. (2014) Robust principal component analysis with complex noise. In ICML.
Zurück zum Zitat Zheng, Y., Liu, G., Sugimoto, S., Yan, S., & Okutomi, M. (2012). Practical low-rank matrix approximation under robust \(l_1\) norm. In CVPR. Zheng, Y., Liu, G., Sugimoto, S., Yan, S., & Okutomi, M. (2012). Practical low-rank matrix approximation under robust \(l_1\) norm. In CVPR.
Zurück zum Zitat Zhou M, Chen, H., Ren, L., Sapiro, G., Carin, L., & Paisley, J.W. (2009). Non-parametric bayesian dictionary learning for sparse image representations. In NIPS. Zhou M, Chen, H., Ren, L., Sapiro, G., Carin, L., & Paisley, J.W. (2009). Non-parametric bayesian dictionary learning for sparse image representations. In NIPS.
Zurück zum Zitat Zhou, X., Yang, C., Zhao, H., & Yu, W. (2014). Low-rank modeling and its applications in image analysis. arXiv preprint arXiv:1401.3409. Zhou, X., Yang, C., Zhao, H., & Yu, W. (2014). Low-rank modeling and its applications in image analysis. arXiv preprint arXiv:​1401.​3409.
Zurück zum Zitat Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In ICCV. Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In ICCV.
Metadaten
Titel
Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision
verfasst von
Shuhang Gu
Qi Xie
Deyu Meng
Wangmeng Zuo
Xiangchu Feng
Lei Zhang
Publikationsdatum
18.07.2016
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 2/2017
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-016-0930-5

Weitere Artikel der Ausgabe 2/2017

International Journal of Computer Vision 2/2017 Zur Ausgabe