Skip to main content

2024 | OriginalPaper | Buchkapitel

4. Well-Posedness and Regularity of Fractional Wave Equations

verfasst von : Yong Zhou

Erschienen in: Fractional Diffusion and Wave Equations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, we first study the well-posedness and regularity of mild solutions for a class of time fractional damped wave equations. A concept of mild solutions is introduced to prove the existence for the linear problem, as well as the regularity of the solutions. We also establish a well-posedness result for nonlinear problem. As an application, we discuss a case of time fractional telegraph equations. Section 4.2 studies the semilinear time fractional wave equation on a whole Euclidean space, also known as the superdiffusive equations. Based on the initial data taken in the fractional Sobolev spaces and some known Sobolev embeddings, we prove the local/global well-posedness results of \(L^2\)-solutions for the linear and semilinear problems. In Sect. 4.3, we concern with an exponential nonlinearity for a fractional wave equation in the whole space, and we establish the local existence of solutions in a dense subspace of the Orlicz classification. Moreover, we obtain the global existence of solutions for small initial data in lower dimension \(1\leq d\leq 3\). Our proofs base on the analyticity of the Mittag-Leffler functions, the framework of prior estimates, and the type of exponential nonlinearity. The material in Sect. 4.1 is due to Zhou and He (Monatsh Math 194(2):425–458, 2021) . The results in Sect. 4.2 are taken from Zhou, He, Alsaedi, and Ahmad Zhou et al. (Elec Res Arch 30(8):2981–3003, 2022). The results in Sect. 4.3 are adopted from He and Zhou (Bull Sci Math 189:103357, 2023).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Affili, E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives. J. Diff. Equ. 266(7), 4027–4060 (2019)MathSciNetCrossRef E. Affili, E. Valdinoci, Decay estimates for evolution equations with classical and fractional time-derivatives. J. Diff. Equ. 266(7), 4027–4060 (2019)MathSciNetCrossRef
6.
Zurück zum Zitat M.R. Alaimia, N.E. Tatar, Blow up for the wave equation with a fractional damping. J. Appl. Anal. 11(1), 133–144 (2005)MathSciNetCrossRef M.R. Alaimia, N.E. Tatar, Blow up for the wave equation with a fractional damping. J. Appl. Anal. 11(1), 133–144 (2005)MathSciNetCrossRef
8.
Zurück zum Zitat L. Aloui, S. Ibrahim, M. Khenissi, Energy decay for linear dissipative wave equations in exterior domains. J. Diff. Equ. 259(5), 2061–2079 (2015)MathSciNetCrossRef L. Aloui, S. Ibrahim, M. Khenissi, Energy decay for linear dissipative wave equations in exterior domains. J. Diff. Equ. 259(5), 2061–2079 (2015)MathSciNetCrossRef
10.
Zurück zum Zitat E. Alvarez, C.G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)MathSciNetCrossRef E. Alvarez, C.G. Gal, V. Keyantuo, M. Warma, Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)MathSciNetCrossRef
14.
Zurück zum Zitat T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics (Wiley-ISTE, New York, 2014)CrossRef T.M. Atanacković, S. Pilipović, B. Stanković, D. Zorica, Fractional Calculus with Applications in Mechanics (Wiley-ISTE, New York, 2014)CrossRef
17.
Zurück zum Zitat A. Bekkai, B. Rebiai, M. Kirane, On local existence and blowup of solutions for a time-space fractional diffusion equation with exponential nonlinearity. Math. Methods Appl. Sci. 42, 1819–1830 (2019)MathSciNetCrossRef A. Bekkai, B. Rebiai, M. Kirane, On local existence and blowup of solutions for a time-space fractional diffusion equation with exponential nonlinearity. Math. Methods Appl. Sci. 42, 1819–1830 (2019)MathSciNetCrossRef
18.
Zurück zum Zitat J. Bergh, J. Löfström, Interpolation Spaces: An Introduction (Springer, Berlin, 1976)CrossRef J. Bergh, J. Löfström, Interpolation Spaces: An Introduction (Springer, Berlin, 1976)CrossRef
32.
Zurück zum Zitat T. Cazenave, Semilinear Schrödinger Equations (American Mathematical Society, New York, 2003)CrossRef T. Cazenave, Semilinear Schrödinger Equations (American Mathematical Society, New York, 2003)CrossRef
33.
Zurück zum Zitat T. Cazenave, B. Weissler, The cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14(10), 807–836 (1990) T. Cazenave, B. Weissler, The cauchy problem for the critical nonlinear Schrödinger equation in \(H^s\). Nonlinear Anal. 14(10), 807–836 (1990)
34.
Zurück zum Zitat L. Chen, Nonlinear stochastic time-fractional diffusion equations on \(\mathbb {R}\): moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. 369(12), 8497–8535 (2017) L. Chen, Nonlinear stochastic time-fractional diffusion equations on \(\mathbb {R}\): moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc. 369(12), 8497–8535 (2017)
36.
Zurück zum Zitat J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364–1377 (2008)MathSciNetCrossRef J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338, 1364–1377 (2008)MathSciNetCrossRef
44.
Zurück zum Zitat M.F. de Alemida, J.C.P. Precioso, Existence and symmetries of solutions in Besov-Morrey spaces for a semilinear heat-wave type equation. J. Math. Anal. Appl. 432, 338–355 (2015)MathSciNetCrossRef M.F. de Alemida, J.C.P. Precioso, Existence and symmetries of solutions in Besov-Morrey spaces for a semilinear heat-wave type equation. J. Math. Anal. Appl. 432, 338–355 (2015)MathSciNetCrossRef
45.
Zurück zum Zitat M.F. de Alemida, A. Viana, Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity. Electr. J. Diff. Equ. 2016(250), 1–20 (2016)MathSciNet M.F. de Alemida, A. Viana, Self-similar solutions for a superdiffusive heat equation with gradient nonlinearity. Electr. J. Diff. Equ. 2016(250), 1–20 (2016)MathSciNet
54.
Zurück zum Zitat J.D. Djida, A. Fernandez, I. Area, Well-posedness results for fractional semi-linear wave equations. Discrete Contin. Dyn. Syst. Ser. B 25(2), 569–597 (2020)MathSciNet J.D. Djida, A. Fernandez, I. Area, Well-posedness results for fractional semi-linear wave equations. Discrete Contin. Dyn. Syst. Ser. B 25(2), 569–597 (2020)MathSciNet
56.
Zurück zum Zitat H. Dong, Y. Liu, Weighted mixed norm estimates for fractional wave equations with VMO coefficients. J. Differ. Equ. 337, 168–254 (2022)MathSciNetCrossRef H. Dong, Y. Liu, Weighted mixed norm estimates for fractional wave equations with VMO coefficients. J. Differ. Equ. 337, 168–254 (2022)MathSciNetCrossRef
59.
Zurück zum Zitat L.C. Evans, Partial Differential Equations, 2nd edn. (American Mathematical Society, Providence, 2010) L.C. Evans, Partial Differential Equations, 2nd edn. (American Mathematical Society, Providence, 2010)
62.
Zurück zum Zitat A.Z. Fino, M. Kirane, The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Commun. Pure Appl. Anal. 19(7), 3625–3650 (2020)MathSciNetCrossRef A.Z. Fino, M. Kirane, The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Commun. Pure Appl. Anal. 19(7), 3625–3650 (2020)MathSciNetCrossRef
63.
Zurück zum Zitat G. Fragnelli, D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations. SIAM J. Control Optim. 47(5), 2520–2539 (2008)MathSciNetCrossRef G. Fragnelli, D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations. SIAM J. Control Optim. 47(5), 2520–2539 (2008)MathSciNetCrossRef
64.
Zurück zum Zitat Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, 309–321 (1990)MathSciNet Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, 309–321 (1990)MathSciNet
65.
Zurück zum Zitat G. Furioli, T. Kawakami, B. Ruf, E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differ. Equ. 262, 145–180 (2017)MathSciNetCrossRef G. Furioli, T. Kawakami, B. Ruf, E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differ. Equ. 262, 145–180 (2017)MathSciNetCrossRef
71.
Zurück zum Zitat T. Ghoula, V.T. Nguyen, H. Zaag, Blowup solutions for a reaction-diffusion system with exponential nonlinearities. J. Differ. Equ. 264, 7523–7579 (2018)MathSciNetCrossRef T. Ghoula, V.T. Nguyen, H. Zaag, Blowup solutions for a reaction-diffusion system with exponential nonlinearities. J. Differ. Equ. 264, 7523–7579 (2018)MathSciNetCrossRef
73.
Zurück zum Zitat I. Graham, U. Langer, J. Melenk, M. Sini (Eds.), Direct and Inverse Problems in Wave Propagation and Applications (Walter de Gruyter, Berlin, 2013) I. Graham, U. Langer, J. Melenk, M. Sini (Eds.), Direct and Inverse Problems in Wave Propagation and Applications (Walter de Gruyter, Berlin, 2013)
79.
Zurück zum Zitat B. Han, K. Kim, D. Park, Weighted \(L_q(L_p)\)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives. J. Differ. Equ. 269, 3515–3550 (2020) B. Han, K. Kim, D. Park, Weighted \(L_q(L_p)\)-estimate with Muckenhoupt weights for the diffusion-wave equations with time-fractional derivatives. J. Differ. Equ. 269, 3515–3550 (2020)
87.
Zurück zum Zitat H. Hirata, C. Miao, Space-time estimates of linear flow and application to some nonlinear integro-differential equations corresponding to fractional-order time derivative. Adv. Differ. Equ. 7(2), 217–236 (2002)MathSciNet H. Hirata, C. Miao, Space-time estimates of linear flow and application to some nonlinear integro-differential equations corresponding to fractional-order time derivative. Adv. Differ. Equ. 7(2), 217–236 (2002)MathSciNet
92.
Zurück zum Zitat S. Ibrahim, M. Majdoub, N. Masmoudi, K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation. Duke Math. J. 150(2), 287–329 (2009)MathSciNetCrossRef S. Ibrahim, M. Majdoub, N. Masmoudi, K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation. Duke Math. J. 150(2), 287–329 (2009)MathSciNetCrossRef
93.
Zurück zum Zitat R. Ikehata, G. Todorova, B. Yordanov, Wave equations with strong damping in Hilbert spaces. J.Differ. Equ. 254(8), 3352–3368 (2013)MathSciNetCrossRef R. Ikehata, G. Todorova, B. Yordanov, Wave equations with strong damping in Hilbert spaces. J.Differ. Equ. 254(8), 3352–3368 (2013)MathSciNetCrossRef
94.
Zurück zum Zitat N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity. J. Differ. Equ. 251, 1172–1194 (2011)MathSciNetCrossRef N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity. J. Differ. Equ. 251, 1172–1194 (2011)MathSciNetCrossRef
95.
Zurück zum Zitat N. Ioku, B. Ruf, E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \({\mathbb R}^2\). Math. Phys. Anal. Geom. 18(29), 19 (2015) N. Ioku, B. Ruf, E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \({\mathbb R}^2\). Math. Phys. Anal. Geom. 18(29), 19 (2015)
112.
Zurück zum Zitat Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)MathSciNetCrossRef Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)MathSciNetCrossRef
115.
Zurück zum Zitat A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006) A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006)
116.
Zurück zum Zitat I. Kim, K.H. Kim, S. Lim, An \(L_q(L_ p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017) I. Kim, K.H. Kim, S. Lim, An \(L_q(L_ p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)
120.
Zurück zum Zitat H. Kita, On interpolation of the Fourier maximal operator in Orlicz spaces. Acta Math. Hungar. 81(3), 175–193 (1998)MathSciNetCrossRef H. Kita, On interpolation of the Fourier maximal operator in Orlicz spaces. Acta Math. Hungar. 81(3), 175–193 (1998)MathSciNetCrossRef
128.
Zurück zum Zitat L. Li, J.G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096 (2018)MathSciNetCrossRef L. Li, J.G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096 (2018)MathSciNetCrossRef
136.
Zurück zum Zitat C. Lin, G. Nakamura, Unique continuation property for anomalous slow diffusion equation. Comm. Partial Differ. Equ. 41(5), 749–758 (2016)MathSciNetCrossRef C. Lin, G. Nakamura, Unique continuation property for anomalous slow diffusion equation. Comm. Partial Differ. Equ. 41(5), 749–758 (2016)MathSciNetCrossRef
137.
Zurück zum Zitat C. Lin, G. Nakamura, Unique continuation property for multi-terms time fractional diffusion equations. Math. Ann. 373(3–4), 929–952 (2019)MathSciNetCrossRef C. Lin, G. Nakamura, Unique continuation property for multi-terms time fractional diffusion equations. Math. Ann. 373(3–4), 929–952 (2019)MathSciNetCrossRef
143.
Zurück zum Zitat Y. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54(3), 031505 (2013) Y. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54(3), 031505 (2013)
144.
Zurück zum Zitat Y. Luchko, F. Mainardi, Fractional diffusion-wave phenomena. Handbook Fract. Calculus Appl. 5, 71–98 (2019)MathSciNet Y. Luchko, F. Mainardi, Fractional diffusion-wave phenomena. Handbook Fract. Calculus Appl. 5, 71–98 (2019)MathSciNet
148.
Zurück zum Zitat O. Mahouachi, T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth. J. Partial Differ. Equ. 24(4), 361–384 (2011)MathSciNetCrossRef O. Mahouachi, T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth. J. Partial Differ. Equ. 24(4), 361–384 (2011)MathSciNetCrossRef
151.
Zurück zum Zitat F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models (Imperial College Press, London, 2010)CrossRef F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models (Imperial College Press, London, 2010)CrossRef
156.
Zurück zum Zitat M. Majdoub, S. Tayachi, Well-posedness, Global existence and decay estimates for the heat equation with general power-exponential nonlinearities. Proc. Int. Cong. of Math. Rio de Janeiro 2, 2379–2404 (2018) M. Majdoub, S. Tayachi, Well-posedness, Global existence and decay estimates for the heat equation with general power-exponential nonlinearities. Proc. Int. Cong. of Math. Rio de Janeiro 2, 2379–2404 (2018)
157.
Zurück zum Zitat M. Majdoub, S. Otsmane, S. Tayachi, Local well-posedness and global existence for the biharmonic heat equation with exponential nonlinearity. Adv. Differ. Equ. 23, 489–522 (2018)MathSciNet M. Majdoub, S. Otsmane, S. Tayachi, Local well-posedness and global existence for the biharmonic heat equation with exponential nonlinearity. Adv. Differ. Equ. 23, 489–522 (2018)MathSciNet
161.
Zurück zum Zitat R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRef R. Metzler, J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetCrossRef
165.
Zurück zum Zitat K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993) K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
173.
Zurück zum Zitat E. Orsingher, L.Beghin, Time-fractional telegraph equations and telegraph process with Brownian time. Probab. Theory Relat. Fields 128(1), 141–160 (2004)CrossRef E. Orsingher, L.Beghin, Time-fractional telegraph equations and telegraph process with Brownian time. Probab. Theory Relat. Fields 128(1), 141–160 (2004)CrossRef
174.
Zurück zum Zitat E. Otárola, A.J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach. Fract. Calc. Appl. Anal. 21(5), 1262–1293 (2018)MathSciNetCrossRef E. Otárola, A.J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach. Fract. Calc. Appl. Anal. 21(5), 1262–1293 (2018)MathSciNetCrossRef
176.
Zurück zum Zitat H. Pecher, Local solutions of semilinear wave equations in \(H^{s+1}\). Math. Methods Appl. Sci. 19(2), 145–170 (1996) H. Pecher, Local solutions of semilinear wave equations in \(H^{s+1}\). Math. Methods Appl. Sci. 19(2), 145–170 (1996)
180.
Zurück zum Zitat I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999) I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)
185.
Zurück zum Zitat T. Saanouni, A blowing up wave equation with exponential type nonlinearity and arbitrary positive energy. J. Math. Anal. Appl. 421, 444–452 (2015)MathSciNetCrossRef T. Saanouni, A blowing up wave equation with exponential type nonlinearity and arbitrary positive energy. J. Math. Anal. Appl. 421, 444–452 (2015)MathSciNetCrossRef
186.
Zurück zum Zitat K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRef K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)MathSciNetCrossRef
190.
199.
Zurück zum Zitat M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions. Math. Ann. 350, 707–719 (2011)MathSciNetCrossRef M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions. Math. Ann. 350, 707–719 (2011)MathSciNetCrossRef
200.
Zurück zum Zitat M. Stojanovic, R. Gorenflo, Nonlinear two term time fractional diffusion wave problem. Nonlinear Anal. Real World Appl. 11(5), 3512–3523 (2010)MathSciNetCrossRef M. Stojanovic, R. Gorenflo, Nonlinear two term time fractional diffusion wave problem. Nonlinear Anal. Real World Appl. 11(5), 3512–3523 (2010)MathSciNetCrossRef
202.
Zurück zum Zitat M. Suzuki, Local existence and nonexistence for reaction-diffusion systems with coupled exponential nonlinearities. J. Math. Anal. Appl. 477(1), 776–804 (2019)MathSciNetCrossRef M. Suzuki, Local existence and nonexistence for reaction-diffusion systems with coupled exponential nonlinearities. J. Math. Anal. Appl. 477(1), 776–804 (2019)MathSciNetCrossRef
204.
Zurück zum Zitat N.E. Tatar, A blow up result for a fractionally damped wave equation. NoDEA Nonlinear Differ. Equ. Appl. 12(2), 215–226 (2005)MathSciNetCrossRef N.E. Tatar, A blow up result for a fractionally damped wave equation. NoDEA Nonlinear Differ. Equ. Appl. 12(2), 215–226 (2005)MathSciNetCrossRef
218.
Zurück zum Zitat H. Vivian, J. Pym, M. Cloud, Applications of Functional Analysis and Operator Theory (Elsevier, Amsterdam, 2005) H. Vivian, J. Pym, M. Cloud, Applications of Functional Analysis and Operator Theory (Elsevier, Amsterdam, 2005)
233.
Zurück zum Zitat H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)MathSciNetCrossRef H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)MathSciNetCrossRef
234.
Zurück zum Zitat R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations. Math. Ann. 356, 99–146 (2013)MathSciNetCrossRef R. Zacher, A De Giorgi-Nash type theorem for time fractional diffusion equations. Math. Ann. 356, 99–146 (2013)MathSciNetCrossRef
236.
Zurück zum Zitat E. Zeidler, Nonlinear Functional Analysis and Its Application II/A (Springer, Berlin, 1990) E. Zeidler, Nonlinear Functional Analysis and Its Application II/A (Springer, Berlin, 1990)
238.
Zurück zum Zitat Q. Zhang, Y. Li, Global well-posedness and blow-up solutions of the Cauchy problem for a time-fractional superdiffusion equation. J. Evol. Equ. 19, 271–303 (2019)MathSciNetCrossRef Q. Zhang, Y. Li, Global well-posedness and blow-up solutions of the Cauchy problem for a time-fractional superdiffusion equation. J. Evol. Equ. 19, 271–303 (2019)MathSciNetCrossRef
240.
Zurück zum Zitat Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2014)CrossRef Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2014)CrossRef
242.
Zurück zum Zitat Y. Zhou, J.W. He, Well-posedness and regularity for fractional damped wave equations. Monatsh. Math. 194(2), 425–458 (2021)MathSciNetCrossRef Y. Zhou, J.W. He, Well-posedness and regularity for fractional damped wave equations. Monatsh. Math. 194(2), 425–458 (2021)MathSciNetCrossRef
Metadaten
Titel
Well-Posedness and Regularity of Fractional Wave Equations
verfasst von
Yong Zhou
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-74031-2_4