Skip to main content

2024 | OriginalPaper | Buchkapitel

2. Well-Posedness of Fractional Diffusion Equations

verfasst von : Yong Zhou

Erschienen in: Fractional Diffusion and Wave Equations

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter deals with the time fractional diffusion equations. In Sect. 2.1, we study a Cauchy problem for a space-time fractional diffusion equation with exponential nonlinearity. Based on the standard \(L^p\)-\(L^q\) estimates of strongly continuous semigroup generated by fractional Laplace operator, we investigate the existence of global solutions for initial data with small norm in the Orlicz space \(\exp L^p({\mathbb R}^d)\) and a time weighted \(L^r({\mathbb R}^d)\) space. In the framework of the Hölder interpolation inequality, we also discuss the existence of local solutions without the Orlicz space. Section 2.2 is devoted to the study of a semilinear diffusion problem with distributed order fractional derivative on \(\mathbb R^N\), which can be used to characterize the ultraslow diffusion processes with time-dependent logarithmic law attenuation. We use the resolvents approach to present the local well-posedness of mild solutions belonging to \(L^r(\mathbb R^N)~(r>2)\), in which the \(L^p\)-\(L^q\) estimates and continuity of the operator are first established. Then, under the assumption on the initial value belonging to \(L^p(\mathbb R^N)\), the global well-posedness of mild solutions is derived. Moreover, a decay estimate in \(L^r\)-norm is included. Section 2.3 discusses an analysis of approximate controllability from the exterior of distributed order fractional diffusion problem with the fractional Laplace operator subject to the nonzero exterior condition. We first establish some well-posedness results, such as the existence, uniqueness, and regularity of the solutions allowing the weighted function \(\mu \) that may be noncontinuous. Especially, we show that the solutions can be represented by the series for the integral of a real-valued function. After giving the unique continuation property of the adjoint system, approximate controllability of the system is also included. The material in Sect. 2.1 is taken from He et al. (Nonlinear Anal Model Control 29(2):286–304, 2024). Section 2.2 is taken from Peng et al. (Monatsh Math 198:445–463, 2022). The results in Sect. 2.3 are taken from Peng and Zhou (Appl Math Optim 86(2):22, 2022).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phy. A: Math. Theor. 40, 6287–6303 (2007)MathSciNetCrossRef O.P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives. J. Phy. A: Math. Theor. 40, 6287–6303 (2007)MathSciNetCrossRef
9.
Zurück zum Zitat A. Alsaedi, B. Ahmad, M. Kirane, B. Rebiai, Local and blowing-up solutions for a space-time fractional evolution system with nonlinearities of exponential growth. Math. Methods Appl. Sci. 42(12), 4378–4393 (2019)MathSciNetCrossRef A. Alsaedi, B. Ahmad, M. Kirane, B. Rebiai, Local and blowing-up solutions for a space-time fractional evolution system with nonlinearities of exponential growth. Math. Methods Appl. Sci. 42(12), 4378–4393 (2019)MathSciNetCrossRef
11.
Zurück zum Zitat H. Amann, Linear and Quasilinear Parabolic Problems (Birkhäuser, Berlin, 1995)CrossRef H. Amann, Linear and Quasilinear Parabolic Problems (Birkhäuser, Berlin, 1995)CrossRef
17.
Zurück zum Zitat A. Bekkai, B. Rebiai, M. Kirane, On local existence and blowup of solutions for a time-space fractional diffusion equation with exponential nonlinearity. Math. Methods Appl. Sci. 42, 1819–1830 (2019)MathSciNetCrossRef A. Bekkai, B. Rebiai, M. Kirane, On local existence and blowup of solutions for a time-space fractional diffusion equation with exponential nonlinearity. Math. Methods Appl. Sci. 42, 1819–1830 (2019)MathSciNetCrossRef
20.
Zurück zum Zitat A.V. Bobylev, C. Cercignani, The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation. Appl. Math. Lett. 15, 807–813 (2002)MathSciNetCrossRef A.V. Bobylev, C. Cercignani, The inverse Laplace transform of some analytic functions with an application to the eternal solutions of the Boltzmann equation. Appl. Math. Lett. 15, 807–813 (2002)MathSciNetCrossRef
27.
Zurück zum Zitat Z. Brzezniak, N. Rana, Local solution to an energy critical 2-D stochastic wave equation with exponential nonlinearity in a bounded domain. J. Differ. Equ. 340, 386–462 (2022)MathSciNetCrossRef Z. Brzezniak, N. Rana, Local solution to an energy critical 2-D stochastic wave equation with exponential nonlinearity in a bounded domain. J. Differ. Equ. 340, 386–462 (2022)MathSciNetCrossRef
30.
Zurück zum Zitat Y. Cao, J.X. Yin, C.P. Wang, Cauchy problems of semilinear pseudo-parabolic equations. J. Differ. Equ. 46, 4568–4590 (2009)MathSciNetCrossRef Y. Cao, J.X. Yin, C.P. Wang, Cauchy problems of semilinear pseudo-parabolic equations. J. Differ. Equ. 46, 4568–4590 (2009)MathSciNetCrossRef
31.
Zurück zum Zitat C.M. Carracedo, M.S. Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies (Elsevier, San Diego, 2001) C.M. Carracedo, M.S. Alix, The Theory of Fractional Powers of Operators, North-Holland Mathematics Studies (Elsevier, San Diego, 2001)
39.
Zurück zum Zitat B. Claus, M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ. 20, 1597–1631 (2020)MathSciNetCrossRef B. Claus, M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method. J. Evol. Equ. 20, 1597–1631 (2020)MathSciNetCrossRef
51.
Zurück zum Zitat H.F. Di, Y.D. Shang, X.M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Appl. Math. Lett. 64, 67–73 (2017)MathSciNetCrossRef H.F. Di, Y.D. Shang, X.M. Peng, Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Appl. Math. Lett. 64, 67–73 (2017)MathSciNetCrossRef
53.
Zurück zum Zitat S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33(2), 377–416 (2017)MathSciNetCrossRef S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33(2), 377–416 (2017)MathSciNetCrossRef
62.
Zurück zum Zitat A.Z. Fino, M. Kirane, The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Commun. Pure Appl. Anal. 19(7), 3625–3650 (2020)MathSciNetCrossRef A.Z. Fino, M. Kirane, The Cauchy problem for heat equation with fractional Laplacian and exponential nonlinearity. Commun. Pure Appl. Anal. 19(7), 3625–3650 (2020)MathSciNetCrossRef
65.
Zurück zum Zitat G. Furioli, T. Kawakami, B. Ruf, E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differ. Equ. 262, 145–180 (2017)MathSciNetCrossRef G. Furioli, T. Kawakami, B. Ruf, E. Terraneo, Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity. J. Differ. Equ. 262, 145–180 (2017)MathSciNetCrossRef
67.
Zurück zum Zitat T. Ghosh, M. Salo, G. Uhlmann, The Calderón problem for the fractional Schrödinger equation. Anal. PDE. 13(2), 455–475 (2020)MathSciNetCrossRef T. Ghosh, M. Salo, G. Uhlmann, The Calderón problem for the fractional Schrödinger equation. Anal. PDE. 13(2), 455–475 (2020)MathSciNetCrossRef
75.
Zurück zum Zitat G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudo-differential operators. Adv. Math. 268, 478–528 (2015) G. Grubb, Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudo-differential operators. Adv. Math. 268, 478–528 (2015)
78.
Zurück zum Zitat H. Hajaiej, X. Yu, Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms. J. Math. Anal. Appl. 396, 569–577 (2012)MathSciNetCrossRef H. Hajaiej, X. Yu, Z. Zhai, Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms. J. Math. Anal. Appl. 396, 569–577 (2012)MathSciNetCrossRef
84.
Zurück zum Zitat J.W. He, Y. Zhou, L. Peng, On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on \(\mathbb {R}^N\). Adv. Nonlinear Anal. 11, 580–597 (2022) J.W. He, Y. Zhou, L. Peng, On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on \(\mathbb {R}^N\). Adv. Nonlinear Anal. 11, 580–597 (2022)
92.
Zurück zum Zitat S. Ibrahim, M. Majdoub, N. Masmoudi, K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation. Duke Math. J. 150(2), 287–329 (2009)MathSciNetCrossRef S. Ibrahim, M. Majdoub, N. Masmoudi, K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation. Duke Math. J. 150(2), 287–329 (2009)MathSciNetCrossRef
94.
Zurück zum Zitat N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity. J. Differ. Equ. 251, 1172–1194 (2011)MathSciNetCrossRef N. Ioku, The Cauchy problem for heat equations with exponential nonlinearity. J. Differ. Equ. 251, 1172–1194 (2011)MathSciNetCrossRef
95.
Zurück zum Zitat N. Ioku, B. Ruf, E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \({\mathbb R}^2\). Math. Phys. Anal. Geom. 18(29), 19 (2015) N. Ioku, B. Ruf, E. Terraneo, Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in \({\mathbb R}^2\). Math. Phys. Anal. Geom. 18(29), 19 (2015)
105.
Zurück zum Zitat B. Jin, R. Lazarov, D. Sheen, Z. Zhou, Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19(1), 69–93 (2016)MathSciNetCrossRef B. Jin, R. Lazarov, D. Sheen, Z. Zhou, Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data. Fract. Calc. Appl. Anal. 19(1), 69–93 (2016)MathSciNetCrossRef
110.
Zurück zum Zitat J. Kemppainen, J. Siljander, V. Vergara, R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb {R}^d\). Math. Ann. 366(3), 941–979 (2016) J. Kemppainen, J. Siljander, V. Vergara, R. Zacher, Decay estimates for time-fractional and other non-local in time subdiffusion equations in \(\mathbb {R}^d\). Math. Ann. 366(3), 941–979 (2016)
111.
Zurück zum Zitat J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equ. 263(1), 149–201 (2017)MathSciNetCrossRef J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations. J. Differ. Equ. 263(1), 149–201 (2017)MathSciNetCrossRef
116.
Zurück zum Zitat I. Kim, K.H. Kim, S. Lim, An \(L_q(L_ p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017) I. Kim, K.H. Kim, S. Lim, An \(L_q(L_ p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)
120.
Zurück zum Zitat H. Kita, On interpolation of the Fourier maximal operator in Orlicz spaces. Acta Math. Hungar. 81(3), 175–193 (1998)MathSciNetCrossRef H. Kita, On interpolation of the Fourier maximal operator in Orlicz spaces. Acta Math. Hungar. 81(3), 175–193 (1998)MathSciNetCrossRef
121.
Zurück zum Zitat A. N. Kochubei, Distributed order calculus and equation of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)MathSciNetCrossRef A. N. Kochubei, Distributed order calculus and equation of ultraslow diffusion. J. Math. Anal. Appl. 340(1), 252–281 (2008)MathSciNetCrossRef
123.
Zurück zum Zitat A. Kubica, K. Ryszewska, Decay of solutions to parabolic-type problem with distributed order Caputo derivative. J. Math. Anal. Appl. 465(1), 75–99 (2018)MathSciNetCrossRef A. Kubica, K. Ryszewska, Decay of solutions to parabolic-type problem with distributed order Caputo derivative. J. Math. Anal. Appl. 465(1), 75–99 (2018)MathSciNetCrossRef
124.
Zurück zum Zitat A. Kubica, K. Ryszewska, Fractional diffusion equation with distributed-order Caputo derivative. J. Integr. Equ. Appl. 31(2), 195–243 (2019)MathSciNetCrossRef A. Kubica, K. Ryszewska, Fractional diffusion equation with distributed-order Caputo derivative. J. Integr. Equ. Appl. 31(2), 195–243 (2019)MathSciNetCrossRef
128.
Zurück zum Zitat L. Li, J.G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096 (2018)MathSciNetCrossRef L. Li, J.G. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096 (2018)MathSciNetCrossRef
129.
Zurück zum Zitat Z. Li, Y. Luchko, M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17(4), 1114–1136 (2014)MathSciNetCrossRef Z. Li, Y. Luchko, M. Yamamoto, Asymptotic estimates of solutions to initial-boundary-value problems for distributed order time-fractional diffusion equations. Fract. Calc. Appl. Anal. 17(4), 1114–1136 (2014)MathSciNetCrossRef
132.
Zurück zum Zitat Z. Li, Y. Luchko, M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem. Comput. Math. Appl. 73, 1041–1052 (2016)MathSciNetCrossRef Z. Li, Y. Luchko, M. Yamamoto, Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem. Comput. Math. Appl. 73, 1041–1052 (2016)MathSciNetCrossRef
134.
Zurück zum Zitat Z. Li, Y. Kian, E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)MathSciNet Z. Li, Y. Kian, E. Soccorsi, Initial-boundary value problem for distributed order time-fractional diffusion equations. Asymptot. Anal. 115(1–2), 95–126 (2019)MathSciNet
135.
Zurück zum Zitat W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differ. Equ. 269(6), 4914–4959 (2020)MathSciNetCrossRef W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differ. Equ. 269(6), 4914–4959 (2020)MathSciNetCrossRef
139.
Zurück zum Zitat Y. Liu, W.S. Jiang, F.L. Huang, Asymptotic behaviour of solutions to some pseudo-parabolic equations. Appl. Math. Lett. 25, 111–114 (2012)MathSciNetCrossRef Y. Liu, W.S. Jiang, F.L. Huang, Asymptotic behaviour of solutions to some pseudo-parabolic equations. Appl. Math. Lett. 25, 111–114 (2012)MathSciNetCrossRef
140.
Zurück zum Zitat W.J. Liu, J.Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 274, 1276–1283 (2018)MathSciNetCrossRef W.J. Liu, J.Y. Yu, A note on blow-up of solution for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 274, 1276–1283 (2018)MathSciNetCrossRef
142.
Zurück zum Zitat Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12(4), 409–422 (2009)MathSciNet Y. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12(4), 409–422 (2009)MathSciNet
148.
Zurück zum Zitat O. Mahouachi, T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth. J. Partial Differ. Equ. 24(4), 361–384 (2011)MathSciNetCrossRef O. Mahouachi, T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth. J. Partial Differ. Equ. 24(4), 361–384 (2011)MathSciNetCrossRef
160.
Zurück zum Zitat M.M. Meerschaert, H.P. Scheffler, Stochastic model for ultraslow diffusion. Stoch. Proc. Appl. 116, 1215–1235 (2006)MathSciNetCrossRef M.M. Meerschaert, H.P. Scheffler, Stochastic model for ultraslow diffusion. Stoch. Proc. Appl. 116, 1215–1235 (2006)MathSciNetCrossRef
164.
Zurück zum Zitat C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. 68, 461–484 (2008)MathSciNetCrossRef C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. 68, 461–484 (2008)MathSciNetCrossRef
170.
Zurück zum Zitat M. Nakamura, T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth. Math. Z. 231, 479–487 (1999)MathSciNetCrossRef M. Nakamura, T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth. Math. Z. 231, 479–487 (1999)MathSciNetCrossRef
179.
Zurück zum Zitat L. Peng, Y. Zhou, J.W. He, The well-posedness analysis of distributed order fractional diffusion problems on \(\mathbb {R}^N\). Monatsh. Math. 198, 445–463 (2022) L. Peng, Y. Zhou, J.W. He, The well-posedness analysis of distributed order fractional diffusion problems on \(\mathbb {R}^N\). Monatsh. Math. 198, 445–463 (2022)
182.
Zurück zum Zitat J. Prüss, Evolutionary Integral Equations and Applications (Birkhäuser, Basel, 1993) J. Prüss, Evolutionary Integral Equations and Applications (Birkhäuser, Basel, 1993)
183.
Zurück zum Zitat W. Rundell, Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Probl. 33(3), 035008 (2017) W. Rundell, Z. Zhang, Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Probl. 33(3), 035008 (2017)
192.
Zurück zum Zitat R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators. Proc. R. Soc. Edinburgh Sect. A 144(4), 831–855 (2014)MathSciNetCrossRef R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators. Proc. R. Soc. Edinburgh Sect. A 144(4), 831–855 (2014)MathSciNetCrossRef
199.
Zurück zum Zitat M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions. Math. Ann. 350, 707–719 (2011)MathSciNetCrossRef M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions. Math. Ann. 350, 707–719 (2011)MathSciNetCrossRef
201.
Zurück zum Zitat C.L. Sun, J.J. Liu, An inverse source problem for distributed order time-fractional diffusion equation. Inverse Probl. 36(5), 055008 (2020) C.L. Sun, J.J. Liu, An inverse source problem for distributed order time-fractional diffusion equation. Inverse Probl. 36(5), 055008 (2020)
214.
Zurück zum Zitat V. Vergara, R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J. Math. Anal. 47(1), 210–239 (2015)MathSciNetCrossRef V. Vergara, R. Zacher, Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods. SIAM J. Math. Anal. 47(1), 210–239 (2015)MathSciNetCrossRef
215.
Zurück zum Zitat V. Vergara, R. Zacher, Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations. J. Evol. Equ. 17(1), 599–626 (2017)MathSciNetCrossRef V. Vergara, R. Zacher, Stability, instability, and blowup for time fractional and other nonlocal in time semilinear subdiffusion equations. J. Evol. Equ. 17(1), 599–626 (2017)MathSciNetCrossRef
227.
Zurück zum Zitat M. Warma, Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57(3), 2037–2063 (2019)MathSciNetCrossRef M. Warma, Approximate controllability from the exterior of space-time fractional diffusive equations. SIAM J. Control Optim. 57(3), 2037–2063 (2019)MathSciNetCrossRef
230.
Zurück zum Zitat R.Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 264, 2732–2763 (2013)MathSciNetCrossRef R.Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 264, 2732–2763 (2013)MathSciNetCrossRef
237.
Zurück zum Zitat Q.G. Zhang, H.R. Sun, The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 46(1), 69–92 (2015)MathSciNetCrossRef Q.G. Zhang, H.R. Sun, The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation. Topol. Methods Nonlinear Anal. 46(1), 69–92 (2015)MathSciNetCrossRef
240.
Zurück zum Zitat Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2014)CrossRef Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2014)CrossRef
245.
Zurück zum Zitat Y. Zhou, J.W. He, B. Ahmad, N.H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)MathSciNetCrossRef Y. Zhou, J.W. He, B. Ahmad, N.H. Tuan, Existence and regularity results of a backward problem for fractional diffusion equations. Math. Methods Appl. Sci. 42, 6775–6790 (2019)MathSciNetCrossRef
Metadaten
Titel
Well-Posedness of Fractional Diffusion Equations
verfasst von
Yong Zhou
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-74031-2_2