Skip to main content
Erschienen in: Environmental Earth Sciences 11/2015

01.06.2015 | Thematic Issue

Wellbore–reservoir coupled simulation to study thermal and fluid processes in a CO2-based geothermal system: identifying favorable and unfavorable conditions in comparison with water

verfasst von: Tianfu Xu, Guanhong Feng, Zhaoyun Hou, Hailong Tian, Yan Shi, Hongwu Lei

Erschienen in: Environmental Earth Sciences | Ausgabe 11/2015

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using CO2 as a heat transmission fluid to extract geothermal energy is currently considered as a way to achieve CO2 resource utilization and geological sequestration. As a novel heat transmission fluid, the thermophysical properties of CO2 are quite different from those of water. CO2 has many advantages, such as larger mobility and buoyancy resulted from the lower density and viscosity. This will reduce the consumption of pressure driving the circulation, and save the energy of external equipment. The cycle even can be achieved by siphon phenomenon under a negative circulating pressure difference. However, there are still some disadvantages for CO2 as the heat transmission fluid, such as small heat capacity, leading to a less heat at the same mass flow rate. At the same time, because of the lager expansion and compression coefficient for CO2, changes in temperature and pressure may cause a more complex flow and thermodynamic processes. The lager compressibility makes it possible to get high temperature at the bottom of the injection well, whereas the lager expansion coefficient makes the temperature drop rapidly along the production well. Therefore, how to scientifically control the production pressure to guarantee sufficient high temperatures at the head of production well and, thereby, improve the efficiency of heat extraction are the key issues needed to be further addressed. The geological and geothermal conditions correspond to the central depression of the Songliao Basin located in the Northest of China. This depression has a high geothermal gradient and heat flow. In this article, a classic idealized “five-spot” reservoir model coupled with wellbores is used for simulations and analyses. The objectives of the present work are: (1) to investigate the fluid flow and thermal processes of supercritical CO2 along the wellbore and in the reservoir, (2) to understand the heat-extracting mechanism, (3) to identify advantages and disadvantages of using CO2 as the heat transmission fluid, and (4) to provide a theoretical basis for the selection of heat transmission fluid.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557CrossRef Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557CrossRef
Zurück zum Zitat Atrens AD, Gurgenci H, Rudolph V (2010) Electricity generation using a carbon-dioxide thermosiphon. Geothermics 39(2):161–169CrossRef Atrens AD, Gurgenci H, Rudolph V (2010) Electricity generation using a carbon-dioxide thermosiphon. Geothermics 39(2):161–169CrossRef
Zurück zum Zitat Brown D (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings twenty-fifth workshop on geothermal reservoir engineering, Stanford University, pp 233–238 Brown D (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings twenty-fifth workshop on geothermal reservoir engineering, Stanford University, pp 233–238
Zurück zum Zitat Dethlefsen F, Ebert M, Dahmke A (2014) A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. Environ Earth Sci 72(5):1733–1747CrossRef Dethlefsen F, Ebert M, Dahmke A (2014) A geological database for parameterization in numerical modeling of subsurface storage in northern Germany. Environ Earth Sci 72(5):1733–1747CrossRef
Zurück zum Zitat Hou Q, Feng Z (2009) Continental petroleum geology of Songliao basin. Petroleum industry press 3, Beijing, pp 277–283 Hou Q, Feng Z (2009) Continental petroleum geology of Songliao basin. Petroleum industry press 3, Beijing, pp 277–283
Zurück zum Zitat Hu L, Pan L, Zhang K (2012) Modeling brine leakage to shallow aquifer through an open wellbore using T2well/ECO2N. Int J Greenh Gas Control 9:393–401CrossRef Hu L, Pan L, Zhang K (2012) Modeling brine leakage to shallow aquifer through an open wellbore using T2well/ECO2N. Int J Greenh Gas Control 9:393–401CrossRef
Zurück zum Zitat Lambrakis N, Zagana E, Katsanou K (2013) Geochemical patterns and origin of alkaline thermal waters in Central Greece. Environ Earth Sci 69(8):2475–2486CrossRef Lambrakis N, Zagana E, Katsanou K (2013) Geochemical patterns and origin of alkaline thermal waters in Central Greece. Environ Earth Sci 69(8):2475–2486CrossRef
Zurück zum Zitat Lindeberg E (2011) Modelling pressure and temperature profile in a CO2 injection well. Energy Procedia 4:3935–3941CrossRef Lindeberg E (2011) Modelling pressure and temperature profile in a CO2 injection well. Energy Procedia 4:3935–3941CrossRef
Zurück zum Zitat Mathias SA, Gluyas JG, Oldenburg CM, Tsang CF (2010) Analytical solution for Joule–Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs. Int J Greenh Gas Control 4(5):806–810CrossRef Mathias SA, Gluyas JG, Oldenburg CM, Tsang CF (2010) Analytical solution for Joule–Thomson cooling during CO2 geo-sequestration in depleted oil and gas reservoirs. Int J Greenh Gas Control 4(5):806–810CrossRef
Zurück zum Zitat MIT (2006) The future of geothermal energy impact of enhanced geothermal systems (EGS) on the United States in the 21st Century, a report for the US Department of Energy. Massachusetts Institute of Technology, Cambridge MIT (2006) The future of geothermal energy impact of enhanced geothermal systems (EGS) on the United States in the 21st Century, a report for the US Department of Energy. Massachusetts Institute of Technology, Cambridge
Zurück zum Zitat Oldenburg CM (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers Manag 48(6):1808–1815CrossRef Oldenburg CM (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers Manag 48(6):1808–1815CrossRef
Zurück zum Zitat Pan L, Oldenburg CM (2014) T2well—an integrated wellbore–reservoir simulator. Comput Geosci 65:46–55CrossRef Pan L, Oldenburg CM (2014) T2well—an integrated wellbore–reservoir simulator. Comput Geosci 65:46–55CrossRef
Zurück zum Zitat Pan L, Oldenburg CM, Wu YS, Pruess K (2009) Wellbore flow model for carbon dioxide and brine. Energy Procedia 1(1):71–78CrossRef Pan L, Oldenburg CM, Wu YS, Pruess K (2009) Wellbore flow model for carbon dioxide and brine. Energy Procedia 1(1):71–78CrossRef
Zurück zum Zitat Pan L, Oldenburg CM, Pruess K, Wu YS (2011a) Transient CO2 leakage and injection in wellbore–reservoir systems for geologic carbon sequestration. Greenh Gases Sci Technol 1(4):335–350CrossRef Pan L, Oldenburg CM, Pruess K, Wu YS (2011a) Transient CO2 leakage and injection in wellbore–reservoir systems for geologic carbon sequestration. Greenh Gases Sci Technol 1(4):335–350CrossRef
Zurück zum Zitat Pan L, Webb SW, Oldenburg CM (2011b) Analytical solution for two-phase flow in a wellbore using the drift-flux model. Adv Water Resour 34(12):1656–1665CrossRef Pan L, Webb SW, Oldenburg CM (2011b) Analytical solution for two-phase flow in a wellbore using the drift-flux model. Adv Water Resour 34(12):1656–1665CrossRef
Zurück zum Zitat Pan L, Wu YS, Oldenburg CM, Pruess K (2011c) T2well/ECO2N Version 1.0: multiphase and non-isothermal model for coupled wellbore–reservoir flow of carbon dioxide and variable salinity water. LBNL-4291E, BerkeleyCrossRef Pan L, Wu YS, Oldenburg CM, Pruess K (2011c) T2well/ECO2N Version 1.0: multiphase and non-isothermal model for coupled wellbore–reservoir flow of carbon dioxide and variable salinity water. LBNL-4291E, BerkeleyCrossRef
Zurück zum Zitat Pan L, Freifeld B, Doughty C, Zakem S, Sheu M, Cutright B, Terrall T (2015) Fully coupled wellbore–reservoir modeling of geothermal heat extraction using CO2 as the working fluid. Geothermics 53:100–113CrossRef Pan L, Freifeld B, Doughty C, Zakem S, Sheu M, Cutright B, Terrall T (2015) Fully coupled wellbore–reservoir modeling of geothermal heat extraction using CO2 as the working fluid. Geothermics 53:100–113CrossRef
Zurück zum Zitat Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746 Pruess K (2004) The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J 3:738–746
Zurück zum Zitat Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35(4):351–367CrossRef Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35(4):351–367CrossRef
Zurück zum Zitat Pruess K (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manag 49(6):1446–1454CrossRef Pruess K (2008) On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manag 49(6):1446–1454CrossRef
Zurück zum Zitat Pruess K, Oldenburg CM, Modiris GJ (1999) TOUGH2 user’s guide Version 2. E. O. Lawrence Berkeley National Laboratory Report, LBNL-43134, BerkeleyCrossRef Pruess K, Oldenburg CM, Modiris GJ (1999) TOUGH2 user’s guide Version 2. E. O. Lawrence Berkeley National Laboratory Report, LBNL-43134, BerkeleyCrossRef
Zurück zum Zitat Ramey HJ Jr (1962) Wellbore heat transmission. J Petrol Technol 225:427–435CrossRef Ramey HJ Jr (1962) Wellbore heat transmission. J Petrol Technol 225:427–435CrossRef
Zurück zum Zitat Randolph J, Saar M (2011) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration. Energy Procedia 4:2206–2213CrossRef Randolph J, Saar M (2011) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration. Energy Procedia 4:2206–2213CrossRef
Zurück zum Zitat Spycher N, Pruess K (2010) A phase-partitioning model for CO2–brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp Porous Media 82:173–196CrossRef Spycher N, Pruess K (2010) A phase-partitioning model for CO2–brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems. Transp Porous Media 82:173–196CrossRef
Zurück zum Zitat Ueda A, Kato K, Ohsumi T, Yajima T, Ito H, Kaieda H, Meycalf R, Takase H (2005) Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions. Geochem J 39:417–425CrossRef Ueda A, Kato K, Ohsumi T, Yajima T, Ito H, Kaieda H, Meycalf R, Takase H (2005) Experimental studies of CO2-rock interaction at elevated temperatures under hydrothermal conditions. Geochem J 39:417–425CrossRef
Zurück zum Zitat Vinsome P, Westerveld J (1980) A simple method for predicting cap and base rock heat losses in thermal reservoir simulators. J Can Pet Technol 19(3):87–90CrossRef Vinsome P, Westerveld J (1980) A simple method for predicting cap and base rock heat losses in thermal reservoir simulators. J Can Pet Technol 19(3):87–90CrossRef
Zurück zum Zitat Xu T, Feng G, Shi Y (2014) On fluid-rock chemical interaction in CO2-based geothermal systems. J Geochem Explor 144:179–193CrossRef Xu T, Feng G, Shi Y (2014) On fluid-rock chemical interaction in CO2-based geothermal systems. J Geochem Explor 144:179–193CrossRef
Zurück zum Zitat Zeidouni M, Nicot JP, Hovorka SD (2014) Monitoring above-zone temperature variations associated with CO2 and brine leakage from a storage aquifer. Environ Earth Sci 72(5):1733–1747CrossRef Zeidouni M, Nicot JP, Hovorka SD (2014) Monitoring above-zone temperature variations associated with CO2 and brine leakage from a storage aquifer. Environ Earth Sci 72(5):1733–1747CrossRef
Metadaten
Titel
Wellbore–reservoir coupled simulation to study thermal and fluid processes in a CO2-based geothermal system: identifying favorable and unfavorable conditions in comparison with water
verfasst von
Tianfu Xu
Guanhong Feng
Zhaoyun Hou
Hailong Tian
Yan Shi
Hongwu Lei
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 11/2015
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-015-4293-y

Weitere Artikel der Ausgabe 11/2015

Environmental Earth Sciences 11/2015 Zur Ausgabe