Skip to main content

Tipp

Weitere Kapitel dieses Buchs durch Wischen aufrufen

2021 | OriginalPaper | Buchkapitel

7. Werkstoffe – Phasenwechselmaterialien

verfasst von : Johannes Goeke

Erschienen in: Thermische Energiespeicher in der Gebäudetechnik

Verlag: Springer Fachmedien Wiesbaden

share
TEILEN

Zusammenfassung

Die Beschreibung des physikalischen und chemischen Verhaltens von Phasenwechselmaterial beginnt mit den allgemeinen Grundlagen der physikalischen Chemie und setzt sich fort in den unterschiedlichsten Materialgruppen, die zahlreiche Autoren beschrieben haben [1–42]. Dazu kommt die Besonderheit der Unterkühlung bei Salzhydraten [43–50]. Der Einsatz, das Verhalten und die Anwendung von verkapseltem PCM und Slurries werden mittlerweile von einigen Autoren beschrieben [51–71]. Im weiteren Verlauf der Kapitel werden die Möglichkeiten einer verbesserten Wärmeübertragung bei Phasenwechselmaterialien in Kap. 8 vorgestellt [1–20]. Weiter werden die Erfordernisse im Hinblick auf Korrosion beim Einsatz von PCM in Kap. 9 diskutiert [1–12]. Danach finden sich unter den Literaturhinweisen in Kap. 11 die Latentwärmespeicher im konstruktiven Aufbau und in der Anwendung [1–25]. Dazu zählen auch die Speicher mit einer gleichrangigen Mischung aus sensiblen und latenten Anteilen, sogenannte Hybridspeicher [16–19]. Es folgen die Publikationen zur Wärmeübertragung in Latentwärmespeichern [20–44]. Ein wichtiges Kapitel zum Verständnis der dynamischen Funktionalität der Latentwärmespeicher. Nicht unerwähnt bleiben sollen die Messverfahren zur Ermittlung der Enthalpie für Phasenwechselmaterialien in Kap. 10 [1–5].
Literatur
1.
Zurück zum Zitat Alkan, C., Günther, E., Himpel, M. et al., Complexing blends of polyacrylic acid-polyethylene glycol and poly (ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials, Energy Conversion and Management Journal, 64 (2012), S. 364–370 CrossRef Alkan, C., Günther, E., Himpel, M. et al., Complexing blends of polyacrylic acid-polyethylene glycol and poly (ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials, Energy Conversion and Management Journal, 64 (2012), S. 364–370 CrossRef
2.
Zurück zum Zitat Abhat A., Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 304 (1983), S. 313–332 CrossRef Abhat A., Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, 304 (1983), S. 313–332 CrossRef
3.
Zurück zum Zitat Atkins P.W., de Paula J., Physical chemistry. Oxford University Press, Oxford (2002), 7. Auflage, ISBN 0-19-879285-9 Atkins P.W., de Paula J., Physical chemistry. Oxford University Press, Oxford (2002), 7. Auflage, ISBN 0-19-879285-9
4.
Zurück zum Zitat Cabeza L.F., Svensson G., Hiebler S., Mehling H., Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material, Applied Thermal Engineering, 23 (2003), S. 1697–1704. CrossRef Cabeza L.F., Svensson G., Hiebler S., Mehling H., Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material, Applied Thermal Engineering, 23 (2003), S. 1697–1704. CrossRef
5.
Zurück zum Zitat Cabeza L., Mehling H., Hiebler S., Ziegler F.: Heat transfer enhancement in water when used as PCM in thermal energy storage. Applied Thermal Engineering, 22 (2002), S. 1141 – 1151 CrossRef Cabeza L., Mehling H., Hiebler S., Ziegler F.: Heat transfer enhancement in water when used as PCM in thermal energy storage. Applied Thermal Engineering, 22 (2002), S. 1141 – 1151 CrossRef
6.
Zurück zum Zitat Ebert, H.P., et al., PCM-Demoprojekt I – Abschlussbericht, ZAE-Würzburg, BMWI-FKZ: 0327370 U (2008), ISBN 978-3-00024699-9 Ebert, H.P., et al., PCM-Demoprojekt I – Abschlussbericht, ZAE-Würzburg, BMWI-FKZ: 0327370 U (2008), ISBN 978-3-00024699-9
7.
Zurück zum Zitat Engel, T., Reid, P., Physikalische Chemie, Pearson Studium (2006), ISBN 978-3868940398 Engel, T., Reid, P., Physikalische Chemie, Pearson Studium (2006), ISBN 978-3868940398
8.
Zurück zum Zitat Eriks, Henning, Phasengleichgewichte von Salz-Wasser-Systemen bei tiefen Temperaturen, Dissertation, TU Freiberg (2014) Eriks, Henning, Phasengleichgewichte von Salz-Wasser-Systemen bei tiefen Temperaturen, Dissertation, TU Freiberg (2014)
9.
Zurück zum Zitat Gibbs, W., J., The Scientific Papers of J. Willard Gibbs, Vol. I Thermodynamics. Dover Publications, New York (1961), ISBN 978-0342377138 Gibbs, W., J., The Scientific Papers of J. Willard Gibbs, Vol. I Thermodynamics. Dover Publications, New York (1961), ISBN 978-0342377138
11.
Zurück zum Zitat Günther E., Mehling H., Werner M., Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D: Appl. Phys., 40 (2007), S. 4636–4641 CrossRef Günther E., Mehling H., Werner M., Melting and nucleation temperatures of three salt hydrate phase change materials under static pressures up to 800 MPa. J. Phys. D: Appl. Phys., 40 (2007), S. 4636–4641 CrossRef
12.
Zurück zum Zitat Hasnain S. M., A Review on Sustainable Thermal Energy Storage Technologies Part1: Heat Storage Materials and Techniques, Int. Jour. Energy Conservation and Management, 39 (1998), S. 1127–1138 CrossRef Hasnain S. M., A Review on Sustainable Thermal Energy Storage Technologies Part1: Heat Storage Materials and Techniques, Int. Jour. Energy Conservation and Management, 39 (1998), S. 1127–1138 CrossRef
13.
Zurück zum Zitat He, B., Gustafsson, E.M., Setterwall, F., Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling system, Energy 24 (1999), S. 1015–1028 CrossRef He, B., Gustafsson, E.M., Setterwall, F., Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling system, Energy 24 (1999), S. 1015–1028 CrossRef
14.
Zurück zum Zitat Hu, H., Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system, Composites Part B: Engineering, (2020), A. 108094 Hu, H., Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system, Composites Part B: Engineering, (2020), A. 108094
15.
Zurück zum Zitat Kenisarin M., Mahkamov K., Solar energy storage using phase change materials, Renewable and Sustainable Energy Reviews, 11/9 (2007), S. 1913–1965 CrossRef Kenisarin M., Mahkamov K., Solar energy storage using phase change materials, Renewable and Sustainable Energy Reviews, 11/9 (2007), S. 1913–1965 CrossRef
16.
Zurück zum Zitat Lane G.A., Solar Heat Storage – Latent Heat Material, Volume I: Background and Scientific Principles, CRC Press, Florida (1983) Lane G.A., Solar Heat Storage – Latent Heat Material, Volume I: Background and Scientific Principles, CRC Press, Florida (1983)
17.
Zurück zum Zitat Lane G. A., Solar Heat storage – Latent Heat Material, Volume II: Technology, CRC Press, Florida (1986) Lane G. A., Solar Heat storage – Latent Heat Material, Volume II: Technology, CRC Press, Florida (1986)
18.
Zurück zum Zitat Lide, D., R., CRC Handbook of Chemistry and Physics. 90. Auflage, (Internet-Version: 2010) CRC Press/Taylor and Francis, Boca Raton Lide, D., R., CRC Handbook of Chemistry and Physics. 90. Auflage, (Internet-Version: 2010) CRC Press/Taylor and Francis, Boca Raton
19.
Zurück zum Zitat Malatidis, N., A., Abhat, A., Untersuchung des thermophysikalischen Verhaltens von Calciumchlorid Hexahydrat zur Verwendung in Latentwärmespeichern, Forschungs- und Ingenieurwesen 48/1 (1982), S. 15–25 Malatidis, N., A., Abhat, A., Untersuchung des thermophysikalischen Verhaltens von Calciumchlorid Hexahydrat zur Verwendung in Latentwärmespeichern, Forschungs- und Ingenieurwesen 48/1 (1982), S. 15–25
20.
Zurück zum Zitat Mehling, H., Cabeza, L.F., Heat and cold storage with PCM, An up to date introduction into basics and applications, Springer, Berlin (2008), ISBN 978-3540685562 Mehling, H., Cabeza, L.F., Heat and cold storage with PCM, An up to date introduction into basics and applications, Springer, Berlin (2008), ISBN 978-3540685562
21.
Zurück zum Zitat Moore, W., Grundlagen der Physikalischen Chemie, De Gruyter, ISBN-13 978-3110099416 (2010) Moore, W., Grundlagen der Physikalischen Chemie, De Gruyter, ISBN-13 978-3110099416 (2010)
22.
Zurück zum Zitat Nagano, K., Mochida, T., Iwata, K., Hiroyoshi, H., Domanski R., Thermal Performance of Mn (NO3)2·6H2O as a New PCM for Cooling System, 5. Workshop IEA ECES Annex 10, Tsu, Japan, 12-14 April (2000) Nagano, K., Mochida, T., Iwata, K., Hiroyoshi, H., Domanski R., Thermal Performance of Mn (NO3)2·6H2O as a New PCM for Cooling System, 5. Workshop IEA ECES Annex 10, Tsu, Japan, 12-14 April (2000)
23.
Zurück zum Zitat Netzwerke Grundlagenforschung erneuerbare Energie und rationelle Energieanwendung, Forschungszentrum Jülich, Statusseminar, Reihe Energietechnik, 66 (2007), ISBN 978-3-89336-485-5 Netzwerke Grundlagenforschung erneuerbare Energie und rationelle Energieanwendung, Forschungszentrum Jülich, Statusseminar, Reihe Energietechnik, 66 (2007), ISBN 978-3-89336-485-5
24.
Zurück zum Zitat Nikolic´, R., Marinovic´-Cincovic´, M., Gadzuric´, S., Zsigrai, I.J., New materials for solar thermal storage—solid/liquid transitions in fatty acid esters, Solar Energy Materials & Solar Cells, 79 (2003), S. 285–292 Nikolic´, R., Marinovic´-Cincovic´, M., Gadzuric´, S., Zsigrai, I.J., New materials for solar thermal storage—solid/liquid transitions in fatty acid esters, Solar Energy Materials & Solar Cells, 79 (2003), S. 285–292
25.
Zurück zum Zitat Oró, E., de Gracia, A., Castell, A., Farid, M.M., Cabeza, L.F., Review on phase change materials (PCMs) for cold thermal energy, storage applications, Applied Energy, 99 (2012), S. 513–533 CrossRef Oró, E., de Gracia, A., Castell, A., Farid, M.M., Cabeza, L.F., Review on phase change materials (PCMs) for cold thermal energy, storage applications, Applied Energy, 99 (2012), S. 513–533 CrossRef
26.
Zurück zum Zitat Oyama H., Shimada W., Ebinuma T., Kamata Y., Takeya S., Uchida T., Nagao J., Narita H.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria, 234 (2005), S. 131–135 CrossRef Oyama H., Shimada W., Ebinuma T., Kamata Y., Takeya S., Uchida T., Nagao J., Narita H.: Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria, 234 (2005), S. 131–135 CrossRef
27.
Zurück zum Zitat Pimpinelli A., Villain J., Physics of Crystal Growth. Cambridge University Press (1998), ISBN 0-521-55198-6 Pimpinelli A., Villain J., Physics of Crystal Growth. Cambridge University Press (1998), ISBN 0-521-55198-6
28.
Zurück zum Zitat Peng, S. Fuchs, A., Wirtz R.A., Polymeric phase change composites for thermal energy storage, J. Appl. Polymer Sci. 93/3, (2004), S. 1240-1251, CrossRef Peng, S. Fuchs, A., Wirtz R.A., Polymeric phase change composites for thermal energy storage, J. Appl. Polymer Sci. 93/3, (2004), S. 1240-1251, CrossRef
29.
Zurück zum Zitat Rogerson M., Cardoso S., Solidification in Heat Packs – Nucleation Rate, AIChE Journal, 49/2 (2003), S. 505-515 CrossRef Rogerson M., Cardoso S., Solidification in Heat Packs – Nucleation Rate, AIChE Journal, 49/2 (2003), S. 505-515 CrossRef
30.
Zurück zum Zitat Royon L., Guiffant G., Flaud P., Investigation of heat transfer in a polymeric phase change material for low level heat. Energy Convers, 38 (1997), S. 517–524 CrossRef Royon L., Guiffant G., Flaud P., Investigation of heat transfer in a polymeric phase change material for low level heat. Energy Convers, 38 (1997), S. 517–524 CrossRef
31.
Zurück zum Zitat Sandnes, B., Rekstad J., Supercooling salt hydrates – Stored enthalpy as a function of temperature, Solar Energy, 80/5 (2006), S. 616–625 CrossRef Sandnes, B., Rekstad J., Supercooling salt hydrates – Stored enthalpy as a function of temperature, Solar Energy, 80/5 (2006), S. 616–625 CrossRef
32.
Zurück zum Zitat Saq’an, S. A., Ayesh, A. S., Zihlif, A., Optical and thermal properties of poly(ethylene oxide) doped with MnCl2 salt, Optical Materials, 24/1 (2003), S. 629–636 Saq’an, S. A., Ayesh, A. S., Zihlif, A., Optical and thermal properties of poly(ethylene oxide) doped with MnCl2 salt, Optical Materials, 24/1 (2003), S. 629–636
33.
Zurück zum Zitat Saq’an, S.A., Ayesh, A. S., Zihlif, A., Martuscelli, E., Ragosta, G., Physical properties of polystyrene/alum composites, Polymer Testing, 23/10 (2004), S. 739–745 CrossRef Saq’an, S.A., Ayesh, A. S., Zihlif, A., Martuscelli, E., Ragosta, G., Physical properties of polystyrene/alum composites, Polymer Testing, 23/10 (2004), S. 739–745 CrossRef
34.
Zurück zum Zitat Sari, A., und Kaygusuz, K., Thermal and heat transfer characteristics in a latent heat storage system using lauric acid, Energy Conversion and Management, 43 (2002), S. 2493–2507 CrossRef Sari, A., und Kaygusuz, K., Thermal and heat transfer characteristics in a latent heat storage system using lauric acid, Energy Conversion and Management, 43 (2002), S. 2493–2507 CrossRef
35.
Zurück zum Zitat Sari-Bey, S., Fois, M. Krupa, I., Ibos, L., Benyoucef, B., Candau, Y., Thermal characterization of polymer matrix composites containing microencapsulated paraffin in solid or liquid state, Energy Conversion and Management, 78 (2014), S. 796–804 CrossRef Sari-Bey, S., Fois, M. Krupa, I., Ibos, L., Benyoucef, B., Candau, Y., Thermal characterization of polymer matrix composites containing microencapsulated paraffin in solid or liquid state, Energy Conversion and Management, 78 (2014), S. 796–804 CrossRef
36.
Zurück zum Zitat Schmidt P., Efimova, A., Abschlussbericht Kristallisationsverhalten von Phasenwechselmaterialien als Latentwärmespeicher (KristallLaW), FKZ 03FH030I2, Senftenberg (2017) Schmidt P., Efimova, A., Abschlussbericht Kristallisationsverhalten von Phasenwechselmaterialien als Latentwärmespeicher (KristallLaW), FKZ 03FH030I2, Senftenberg (2017)
37.
Zurück zum Zitat Stockerl, R., Dynamische Untersuchungen zur Rekristallisation inkongruent schmelzender Salzhydrate am Beispiel des Glaubersalzes, Dissertation Universität Regensburg (1988) Stockerl, R., Dynamische Untersuchungen zur Rekristallisation inkongruent schmelzender Salzhydrate am Beispiel des Glaubersalzes, Dissertation Universität Regensburg (1988)
38.
Zurück zum Zitat Telkes, M., Raymond, E., Storing solar heat in chemicals-a report on the Dover house, Heat Vent., 46 (1949), S. 80–86 Telkes, M., Raymond, E., Storing solar heat in chemicals-a report on the Dover house, Heat Vent., 46 (1949), S. 80–86
39.
Zurück zum Zitat Tuncbilek, K., Sari, A., Tarhan, s., Ergünes, G., Kamil Kaygusuz, K., Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications, Energy, 30 (2005), S. 677–692 CrossRef Tuncbilek, K., Sari, A., Tarhan, s., Ergünes, G., Kamil Kaygusuz, K., Lauric and palmitic acids eutectic mixture as latent heat storage material for low temperature heating applications, Energy, 30 (2005), S. 677–692 CrossRef
40.
Zurück zum Zitat van Essen, V M., Zondag, H. A., Gores, J. C. et al., Characterization of MgS04 Hydrate for Thermochemical Seasonal Heat Storage, Journal of Solar Energy Engineering, 131/4 (2009), S. 1–7 van Essen, V M., Zondag, H. A., Gores, J. C. et al., Characterization of MgS04 Hydrate for Thermochemical Seasonal Heat Storage, Journal of Solar Energy Engineering, 131/4 (2009), S. 1–7
41.
Zurück zum Zitat VDI Wärmeatlas, Fischer, L., Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher, 12. Auflage (2019) VDI Wärmeatlas, Fischer, L., Phasenwechselmaterialien (PCM) für Latent-Wärmespeicher, 12. Auflage (2019)
42.
Zurück zum Zitat Zalba B., Marin J.M., Cabeza L.F., Mehling H., Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Applied thermal Engineering, 23 (2003), S. 251–283 Zalba B., Marin J.M., Cabeza L.F., Mehling H., Review on thermal energy storage with phase change materials, heat transfer analysis and applications. Applied thermal Engineering, 23 (2003), S. 251–283
43.
Zurück zum Zitat Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science, 319 (2008), S. 582–587 Angell, C. A. Insights into phases of liquid water from study of its unusual glass-forming properties. Science, 319 (2008), S. 582–587
44.
Zurück zum Zitat Englmair, G., Furbo, S., Dannemand, M., Fan, J., Experimental investigation of a tank-in-tank heat storage unit utilizing stable supercooling of sodium acetate trihydrate, Applied Thermal Engineering, 167/2 (2020), A. 114709 Englmair, G., Furbo, S., Dannemand, M., Fan, J., Experimental investigation of a tank-in-tank heat storage unit utilizing stable supercooling of sodium acetate trihydrate, Applied Thermal Engineering, 167/2 (2020), A. 114709
45.
Zurück zum Zitat Furbo, S., Andersen, E., Chen, Z., Development of a Seasonal Heat Storage based on Stable Supercooling of a Sodium Acetate Water Mixture, Energy Procedia, 30 (2012), S. 260–269 CrossRef Furbo, S., Andersen, E., Chen, Z., Development of a Seasonal Heat Storage based on Stable Supercooling of a Sodium Acetate Water Mixture, Energy Procedia, 30 (2012), S. 260–269 CrossRef
46.
Zurück zum Zitat Günther, E., Mehling, H., Hiebler, S., Modeling of subcooling and solidification of phase change materials, Modelling and Simulation in Materials Science and Engineering, 15/8 (2007), S. 879–892 CrossRef Günther, E., Mehling, H., Hiebler, S., Modeling of subcooling and solidification of phase change materials, Modelling and Simulation in Materials Science and Engineering, 15/8 (2007), S. 879–892 CrossRef
47.
Zurück zum Zitat Jähnert, S., Melting and freezing of water in cylindrical silica nanopores, Phys. Chem., 10 (2008), S. 6039–6051 Jähnert, S., Melting and freezing of water in cylindrical silica nanopores, Phys. Chem., 10 (2008), S. 6039–6051
48.
Zurück zum Zitat Moore, E.B., Molinero, V., Structural transformation in supercooled water controls the crystallization rate of ice, Nature, (2011), S. 479 506 Moore, E.B., Molinero, V., Structural transformation in supercooled water controls the crystallization rate of ice, Nature, (2011), S. 479 506
49.
Zurück zum Zitat Moore, E. B. & Molinero, V. Growing correlation length in supercooled water, J. Chem. Phys., 130 (2009), A. 244505 Moore, E. B. & Molinero, V. Growing correlation length in supercooled water, J. Chem. Phys., 130 (2009), A. 244505
50.
Zurück zum Zitat Tombari, E., Ferrari, C., Salvetti, G., Heat capacity anomaly in a large sample of supercooled water, Chem. Phys. Lett., 300 (1999), S. 749–751 Tombari, E., Ferrari, C., Salvetti, G., Heat capacity anomaly in a large sample of supercooled water, Chem. Phys. Lett., 300 (1999), S. 749–751
51.
Zurück zum Zitat Brown, R.C., Rasberry, J.D., Overmann, S.P., Microencapsulated phase-change material as heat transfer media in gas-fluidized beds, Powder Technol., 98/3 (1998), S. 217–222 CrossRef Brown, R.C., Rasberry, J.D., Overmann, S.P., Microencapsulated phase-change material as heat transfer media in gas-fluidized beds, Powder Technol., 98/3 (1998), S. 217–222 CrossRef
52.
Zurück zum Zitat Brown E.N., Kessler M.R., Sottos N.R., White S.R., In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, J. Microencapsulation, 20 (2003), S. 719–730 CrossRef Brown E.N., Kessler M.R., Sottos N.R., White S.R., In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, J. Microencapsulation, 20 (2003), S. 719–730 CrossRef
53.
Zurück zum Zitat Fries, Y., Kofler, M., Kauffeld, M., Grund, S., Density modification of ice particles in ice slurry, International Journal of Refrigeration, 62 (2016), S. 97–105 CrossRef Fries, Y., Kofler, M., Kauffeld, M., Grund, S., Density modification of ice particles in ice slurry, International Journal of Refrigeration, 62 (2016), S. 97–105 CrossRef
54.
Zurück zum Zitat Goeke, J., Schwamborn, E., Phasenwechselmaterial in Kugelkapseln, Chemie Ingenieur Technik, 92/8 (2020), S. 1098–1108 CrossRef Goeke, J., Schwamborn, E., Phasenwechselmaterial in Kugelkapseln, Chemie Ingenieur Technik, 92/8 (2020), S. 1098–1108 CrossRef
55.
Zurück zum Zitat Kenisarin, M., Mahkamov M., Costa, S.K., Makhkamova, I., Melting and solidification of PCMs inside a spherical capsule – Review, Journal of Energy Storage, 27 (2020), Article 101082 Kenisarin, M., Mahkamov M., Costa, S.K., Makhkamova, I., Melting and solidification of PCMs inside a spherical capsule – Review, Journal of Energy Storage, 27 (2020), Article 101082
56.
Zurück zum Zitat Kauffeld, M., Grund, S., Ice slurry – History, current technologies and future developments, International Journal of Refrigeration, 99 (2019), S. 264–271 CrossRef Kauffeld, M., Grund, S., Ice slurry – History, current technologies and future developments, International Journal of Refrigeration, 99 (2019), S. 264–271 CrossRef
57.
Zurück zum Zitat Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E., S., Ice slurry applications, International Journal of Refrigeration, 33/8 (2010), S. 1491–1505 Kauffeld, M., Wang, M.J., Goldstein, V., Kasza, K.E., S., Ice slurry applications, International Journal of Refrigeration, 33/8 (2010), S. 1491–1505
58.
Zurück zum Zitat Latent Latentwärmespeicher in Baustoffen, FKZ 0239 840-A BASF-Maxit, Micronal PCM (BASF) Latent Latentwärmespeicher in Baustoffen, FKZ 0239 840-A BASF-Maxit, Micronal PCM (BASF)
59.
Zurück zum Zitat Lu, W. and S.A. Tassou, Experimental study of the thermal characteristics of phase change slurries for active cooling. Applied Energy, 91 (2012), S. 366–374. CrossRef Lu, W. and S.A. Tassou, Experimental study of the thermal characteristics of phase change slurries for active cooling. Applied Energy, 91 (2012), S. 366–374. CrossRef
60.
Zurück zum Zitat Müller, K., O 2 -Durchlässigkeit von Kunststoffflaschen und Verschlüssen, Modellierung der Stofftransportvorgänge, Dissertation TU München, (2003) Müller, K., O 2 -Durchlässigkeit von Kunststoffflaschen und Verschlüssen, Modellierung der Stofftransportvorgänge, Dissertation TU München, (2003)
61.
Zurück zum Zitat Nagano, K., Takeda, S., Mochida, T., Shimakura, K., Nakamura, T., Study of a floor supply air conditioning system using granular phase change material to augment building thermal mass storage – heat response in small scale experiments, Energy Building, 38 (2006) S. 436–446, Nagano, K., Takeda, S., Mochida, T., Shimakura, K., Nakamura, T., Study of a floor supply air conditioning system using granular phase change material to augment building thermal mass storage – heat response in small scale experiments, Energy Building, 38 (2006) S. 436–446,
62.
Zurück zum Zitat Özonur Y., Mazman M., Paksoy H. Ö., Evliya H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research 30 , (2006), S. 741–749 CrossRef Özonur Y., Mazman M., Paksoy H. Ö., Evliya H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. International Journal of Energy Research 30 , (2006), S. 741–749 CrossRef
63.
Zurück zum Zitat Polymer Permeability, J. Comyn, Elsevier, Applied Science Publishers, (1985), ISBN 978 085 3343 226 Polymer Permeability, J. Comyn, Elsevier, Applied Science Publishers, (1985), ISBN 978 085 3343 226
64.
Zurück zum Zitat Polymer Handbook, Brandrup, J., Immergut, (Hrsg.) E.H., 2 Vol., Wiley Interscience Publication (1989), – Pauls, S., Permeability and Diffusion Data, S. 435–449 Polymer Handbook, Brandrup, J., Immergut, (Hrsg.) E.H., 2 Vol., Wiley Interscience Publication (1989), – Pauls, S., Permeability and Diffusion Data, S. 435–449
65.
Zurück zum Zitat Royon L., Guiffant G., Flaud P., Investigation of heat transfer in a polymeric phase change material for low level heat, Energy Convers, 38 (1997), S. 517–24 CrossRef Royon L., Guiffant G., Flaud P., Investigation of heat transfer in a polymeric phase change material for low level heat, Energy Convers, 38 (1997), S. 517–24 CrossRef
66.
Zurück zum Zitat Rösler, F., Brüggemann, D., Numerical model of macroscopic latent heat thermal energy storage capsules, The 12th International conference on energy storage, Lleida, Spain, May 16th-18th. Proceedings, (2012), 497 S., ISBN 978-84-938793-3-4 Rösler, F., Brüggemann, D., Numerical model of macroscopic latent heat thermal energy storage capsules, The 12th International conference on energy storage, Lleida, Spain, May 16th-18th. Proceedings, (2012), 497 S., ISBN 978-84-938793-3-4
67.
Zurück zum Zitat Rubitherm (Berlin), Entwicklung von Salzhydraten mit Temperaturen von 15° bis 22° samt geeigneter Verkapselung, BMWI.IIC6, FKZ: 03ESP138F (2017) Rubitherm (Berlin), Entwicklung von Salzhydraten mit Temperaturen von 15° bis 22° samt geeigneter Verkapselung, BMWI.IIC6, FKZ: 03ESP138F (2017)
68.
Zurück zum Zitat Rudolph, J., Vorbeck L., Gschwander S., Haussmann T., Neumann H., Schossig P., Application oriented Investigation of PCS on thermal hydraulic properties, 2. Int. Conference Sustainable Energy Storage, 19.-21. Juni, Trinity College, Dublin Rudolph, J., Vorbeck L., Gschwander S., Haussmann T., Neumann H., Schossig P., Application oriented Investigation of PCS on thermal hydraulic properties, 2. Int. Conference Sustainable Energy Storage, 19.-21. Juni, Trinity College, Dublin
69.
Zurück zum Zitat Schossig, P., et al., Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells, 89 (2005), S. 297–306. CrossRef Schossig, P., et al., Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells, 89 (2005), S. 297–306. CrossRef
70.
Zurück zum Zitat Schossig, Peter, Mikroverkapselte Phasenwechselmaterialien in Wandverbundsystemen Dissertation, TH Karlsruhe, (2005) Schossig, Peter, Mikroverkapselte Phasenwechselmaterialien in Wandverbundsystemen Dissertation, TH Karlsruhe, (2005)
71.
Zurück zum Zitat Vorbeck, L., Thiel, P., Lüdemann, B., Schossig, P., Pilot application of phase change slurry in a 5 m 3 storage, Applied Energy, 109 (2014), s. 538–543 Vorbeck, L., Thiel, P., Lüdemann, B., Schossig, P., Pilot application of phase change slurry in a 5 m 3 storage, Applied Energy, 109 (2014), s. 538–543
Metadaten
Titel
Werkstoffe – Phasenwechselmaterialien
verfasst von
Johannes Goeke
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-658-34510-5_7