Skip to main content

10.03.2015 | Werkstofftechnik | Schwerpunkt | Online-Artikel

Rätsel Spinnenseide entschlüsselt

verfasst von: Dieter Beste

3 Min. Lesedauer

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
print
DRUCKEN
insite
SUCHEN
loading …

Ein Forscherteam der Universität Bayreuth hat den Prozess der Seidenherstellung in der Spinne entschlüsselt und auch im Detail erfolgreich nachahmen können. Die auf diese Weise hergestellte biomimetische Spinnenseide zeigt erstaunliche Eigenschaften.

Spinnenseide ist ein technologisch hochinteressantes Material, weil sie Festigkeit und Elastizität in einzigartiger Weise verbindet. Sie ist stärker belastbar als alle anderen in der Natur vorkommenden oder vom Menschen produzierten Fasern. Einem Forscherteam an der Universität Bayreuth um Thomas Scheibel ist es jetzt erstmals gelungen, den Prozess der Seidenherstellung in der Spinne vollständig zu entschlüsseln und dabei die Gründe aufzuklären, weshalb Spinnenseide so außerordentlich belastbar ist.

Aufbauend auf diesen Einsichten in das ‚Know-how‘ der Spinne haben die Wissenschaftler aus biotechnologisch hergestellten Spinnenseidenproteinen Fasern entwickelt, die genauso belastbar sind wie das natürliche Vorbild. „Das Ergebnis hat uns selbst überrascht“, berichtet Prof. Scheibel. „Denn die auf diesem Weg hergestellte biomimetische Seide besitzt tatsächlich eine mechanische Belastbarkeit wie natürliche Spinnenseide. Damit stehen die Türen jetzt weit offen für das Erkunden von Anwendungsmöglichkeiten, wie etwa in der Textilindustrie oder der Medizintechnik.“

Grundstrukturen der Spinnenseidenproteine

Weitere Artikel zum Thema

Jede Faser aus Spinnenseide enthält Millionen von Proteinen, die auf einzigartige Weise miteinander vernetzt sind. Jedes Protein besteht dabei aus drei Teilen, aus sogenannten Domänen: Eine lange Kette von kurzen, sich hundertfach wiederholenden Aminosäuresequenzen bildet die große Kerndomäne. An ihrem einen Ende befindet sich eine Molekülgruppe, die eine freie Aminogruppe enthält und deshalb „N-terminale Domäne“ heißt; am anderen Ende der Kette hängt eine Molekülgruppe, die wegen ihrer Carboxy-Gruppe (COOH) als „C-terminale Domäne“ bezeichnet wird.

„Die herausragenden Eigenschaften der Spinnenseide resultieren aus dem Zusammenspiel dieser drei Proteindomänen“, erläutert Thomas Scheibel. „Dabei hängen die Festigkeit, Elastizität und weitere mechanische Eigenschaften einer Seidenfaser entscheidend davon ab, aus welchen Aminosäuren sich die Kerndomäne zusammensetzt. In dieser Hinsicht gibt es große Unterschiede von Seidenart zu Seidenart und von Spinne zu Spinne. Die C- und die N-terminale Domäne sind hingegen bei allen Spinnen annähernd gleich. Sie übernehmen wichtige Steuerungsfunktionen, wenn es darum geht, die einzelnen Spinnenseidenmoleküle in eine reißfeste Seidenfaser zu verarbeiten. Die Bedeutung dieser beiden Steuerdomänen ist in früheren Forschungsarbeiten häufig unterschätzt worden.“

Von der kugelförmigen Mizelle bis zur fertigen Seidenfaser

Um nun Spinnenseidenfasern zu erhalten, die sich durch mechanische Eigenschaften wie in der Natur auszeichnen, muss sich der Herstellungs- und Verarbeitungsprozess weitgehend an der Spinne orientieren. In der Spinne finden sich die einzelnen, im Drüsengewebe entstandenen Proteine im Spinndrüsensack zusammen. Hier bilden sie – wie die Bayreuther Wissenschaftler herausgefunden haben – kugelförmige Strukturen (Mizellen), die Eigenschaften von Flüssigkristallen aufweisen. Die Kerndomänen der Seidenproteine sind im Inneren der Mizelle platziert, ihre Enddomänen befinden sich hingegen an der Mizellenoberfläche. Dabei sind die C-terminalen Domänen paarweise verknüpft, während die N-terminalen Domänen lose Enden bilden.

„Diese kugelförmige Anordnung der Seidenprotein-Paare ist eine extrem stabile Speicherform, die eine ungewollte Faserbildung komplett unterdrückt“, erklärt Scheibel. „Sie hat zugleich den Vorteil, dass sie die Seidenproteine so vororientiert, dass sie für eine rasche Faserproduktion zur Verfügung stehen.“ Denn sobald die Spinne eine Faser benötigt, drückt sie die Spinnlösung aus dem Drüsensack in den Spinnkanal. Hier werden störende Wassermoleküle, die sich noch an den Oberflächen der Seidenproteine befinden, entfernt. Zugleich sinkt der pH-Wert, so dass die bisher losen N-terminalen Domänen der Seidenprotein-Paare ihre Struktur schalterartig ändern und sich mit anderen N-terminalen Domänen verklammern. Durch die im Spinnkanal vorherrschenden Scherverhältnisse erhalten die vernetzten Seidenproteine ihre endgültige Ausrichtung als Fasern. Die Spinne kann die Fasern dann aus dem Spinnkanal herausziehen, indem sie beispielsweise ihre Hinterbeine zu Hilfe nimmt.

print
DRUCKEN

Die Hintergründe zu diesem Inhalt

2014 | OriginalPaper | Buchkapitel

Patents of Nature

Quelle:
Sustainable Automotive Technologies 2013

2015 | OriginalPaper | Buchkapitel

Natural Spider Silks

Natural Protein Fibers
Quelle:
Innovative Biofibers from Renewable Resources

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.