Skip to main content

2022 | OriginalPaper | Buchkapitel

What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation?

verfasst von : Gangin Park, Chunsan Hong, Bohyung Kim, Won Hwa Kim

Erschienen in: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent literature point out overconfidence problems in DNNs which is demonstrated as biased confidences in false predictions in medical image segmentation tasks regardless of the ground truth. To explore and identify the uncertain regions, we propose a post-training method with untargeted adversarial examples where the input image is iteratively perturbed in a direction that maximizes the loss of original and perturbed prediction. The perturbed predictions from these adversarial examples can be seen as unstable areas in terms of input variability; we theoretically observe that the gradient of negative class confidence in terms of input image plays a key role for perturbed outputs, and empirically show that a small adversarial perturbation can help find hidden regions in the output segmentation maps. Compared to previous methods for uncertainty estimation, our method yields competitive results for uncertain region findings on medical image datasets while only requiring one extra inference from a pre-trained model and short iteration of attack. We expect our novel findings can provide insights for future medical image segmentation problems where detection of subtle variations (e.g., lesions) are required.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alarab, I., Prakoonwit, S.: Adversarial attack for uncertainty estimation: identifying critical regions in neural networks. Neural Process. Lett. 54(3), 1805–1821 (2022)CrossRef Alarab, I., Prakoonwit, S.: Adversarial attack for uncertainty estimation: identifying critical regions in neural networks. Neural Process. Lett. 54(3), 1805–1821 (2022)CrossRef
2.
Zurück zum Zitat Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)CrossRef Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)CrossRef
3.
Zurück zum Zitat Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)CrossRef Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)CrossRef
4.
Zurück zum Zitat Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018) Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)
7.
Zurück zum Zitat Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016) Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)
8.
Zurück zum Zitat Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017) Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)
9.
Zurück zum Zitat Galil, I., El-Yaniv, R.: Disrupting deep uncertainty estimation without harming accuracy. In: Advances in Neural Information Processing Systems, vol. 34, pp. 21285–21296 (2021) Galil, I., El-Yaniv, R.: Disrupting deep uncertainty estimation without harming accuracy. In: Advances in Neural Information Processing Systems, vol. 34, pp. 21285–21296 (2021)
10.
Zurück zum Zitat Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014) Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:​1412.​6572 (2014)
11.
Zurück zum Zitat Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017) Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)
12.
Zurück zum Zitat He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
14.
Zurück zum Zitat Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017) Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, vol. 30 (2017)
16.
Zurück zum Zitat Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018) Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
17.
Zurück zum Zitat Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017) Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)
18.
Zurück zum Zitat Liew, S.L., et al.: A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. medRxiv (2021) Liew, S.L., et al.: A large, curated, open-source stroke neuroimaging dataset to improve lesion segmentation algorithms. medRxiv (2021)
19.
Zurück zum Zitat Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017) Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:​1706.​06083 (2017)
20.
Zurück zum Zitat Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)CrossRef Mehrtash, A., Wells, W.M., Tempany, C.M., Abolmaesumi, P., Kapur, T.: Confidence calibration and predictive uncertainty estimation for deep medical image segmentation. IEEE Trans. Med. Imaging 39(12), 3868–3878 (2020)CrossRef
21.
Zurück zum Zitat Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)CrossRef Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)CrossRef
22.
Zurück zum Zitat Rister, B., Yi, D., Shivakumar, K., Nobashi, T., Rubin, D.L.: CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci. Data 7(1), 1–9 (2020)CrossRef Rister, B., Yi, D., Shivakumar, K., Nobashi, T., Rubin, D.L.: CT-ORG, a new dataset for multiple organ segmentation in computed tomography. Sci. Data 7(1), 1–9 (2020)CrossRef
25.
Zurück zum Zitat Tuna, O.F., Catak, F.O., Eskil, M.T.: Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools Appl. 81(8), 11479–11500 (2022)CrossRef Tuna, O.F., Catak, F.O., Eskil, M.T.: Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools Appl. 81(8), 11479–11500 (2022)CrossRef
26.
Zurück zum Zitat Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482. PMLR (2019) Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., Jordan, M.: Theoretically principled trade-off between robustness and accuracy. In: International Conference on Machine Learning, pp. 7472–7482. PMLR (2019)
27.
Zurück zum Zitat Zhang, J., et al.: Attacks which do not kill training make adversarial learning stronger. In: International Conference on Machine Learning, pp. 11278–11287. PMLR (2020) Zhang, J., et al.: Attacks which do not kill training make adversarial learning stronger. In: International Conference on Machine Learning, pp. 11278–11287. PMLR (2020)
28.
Zurück zum Zitat Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)CrossRef Zhou, Y., Wang, B., Huang, L., Cui, S., Shao, L.: A benchmark for studying diabetic retinopathy: segmentation, grading, and transferability. IEEE Trans. Med. Imaging 40(3), 818–828 (2020)CrossRef
Metadaten
Titel
What Do Untargeted Adversarial Examples Reveal in Medical Image Segmentation?
verfasst von
Gangin Park
Chunsan Hong
Bohyung Kim
Won Hwa Kim
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-16749-2_5

Premium Partner