Skip to main content

2020 | OriginalPaper | Buchkapitel

Which Bills Are Lobbied? Predicting and Interpreting Lobbying Activity in the US

verfasst von : Ivan Slobozhan, Peter Ormosi, Rajesh Sharma

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using lobbying data from OpenSecrets.org, we offer several experiments applying machine learning techniques to predict if a piece of legislation (US bill) has been subjected to lobbying activities or not. We also investigate the influence of the intensity of the lobbying activity on how discernible a lobbied bill is from one that was not subject to lobbying. We compare the performance of a number of different models (logistic regression, random forest, CNN and LSTM) and text embedding representations (BOW, TF-IDF, GloVe, Law2Vec). We report results of above 0.85% ROC AUC scores, and 78% accuracy. Model performance significantly improves (95% ROC AUC, and 88% accuracy) when bills with higher lobbying intensity are looked at. We also propose a method that could be used for unlabelled data. Through this we show that there is a considerably large number of previously unlabelled US bills where our predictions suggest that some lobbying activity took place. We believe our method could potentially contribute to the enforcement of the US Lobbying Disclosure Act (LDA) by indicating the bills that were likely to have been affected by lobbying but were not filed as such.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
2
In the US, lobbying activities (above a certain threshold) need to be disclosed, and non-compliance can result in a pecuniary sanction (fine) or, in some cases up to 5 years imprisonment. In Sect. 5 we revisit this assumption.
 
Literatur
1.
Zurück zum Zitat Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D., Lampos, V.: Predicting judicial decisions of the European court of human rights: a natural language processing perspective. PeerJ Comput. Sci. 2, e93 (2016)CrossRef Aletras, N., Tsarapatsanis, D., Preoţiuc-Pietro, D., Lampos, V.: Predicting judicial decisions of the European court of human rights: a natural language processing perspective. PeerJ Comput. Sci. 2, e93 (2016)CrossRef
2.
Zurück zum Zitat Boella, G., Di Caro, L., Humphreys, L.: Using classification to support legal knowledge engineers in the Eunomos legal document management system. In: Fifth International Workshop on Juris-Informatics (JURISIN) (2011) Boella, G., Di Caro, L., Humphreys, L.: Using classification to support legal knowledge engineers in the Eunomos legal document management system. In: Fifth International Workshop on Juris-Informatics (JURISIN) (2011)
5.
Zurück zum Zitat Dale, R.: Law and word order: NLP in legal tech. Nat. Lang. Eng. 25(1), 211–217 (2019)CrossRef Dale, R.: Law and word order: NLP in legal tech. Nat. Lang. Eng. 25(1), 211–217 (2019)CrossRef
6.
Zurück zum Zitat De Figueiredo, J.M., Richter, B.K.: Advancing the empirical research on lobbying. Ann. Rev. Polit. Sci. 17, 163–185 (2014)CrossRef De Figueiredo, J.M., Richter, B.K.: Advancing the empirical research on lobbying. Ann. Rev. Polit. Sci. 17, 163–185 (2014)CrossRef
7.
Zurück zum Zitat Farzindar, A., Lapalme, G.: Legal text summarization by exploration of the thematic structure and argumentative roles. In: Text Summarization Branches Out, pp. 27–34 (2004) Farzindar, A., Lapalme, G.: Legal text summarization by exploration of the thematic structure and argumentative roles. In: Text Summarization Branches Out, pp. 27–34 (2004)
8.
Zurück zum Zitat Goldberg, Y.: Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol. 10(1), 1–309 (2017)CrossRef Goldberg, Y.: Neural network methods for natural language processing. Synth. Lect. Hum. Lang. Technol. 10(1), 1–309 (2017)CrossRef
9.
Zurück zum Zitat Grasse, N., Heidbreder, B.: The influence of lobbying activity in state legislatures: evidence from Wisconsin. Legislative Stud. Q. 36(4), 567–589 (2011)CrossRef Grasse, N., Heidbreder, B.: The influence of lobbying activity in state legislatures: evidence from Wisconsin. Legislative Stud. Q. 36(4), 567–589 (2011)CrossRef
12.
Zurück zum Zitat Hill, M.D., Kelly, G.W., Lockhart, G.B., Van Ness, R.A.: Determinants and effects of corporate lobbying. Financial Manag. 42(4), 931–957 (2013)CrossRef Hill, M.D., Kelly, G.W., Lockhart, G.B., Van Ness, R.A.: Determinants and effects of corporate lobbying. Financial Manag. 42(4), 931–957 (2013)CrossRef
14.
Zurück zum Zitat Li, P., Zhao, F., Li, Y., Zhu, Z.: Law text classification using semi-supervised convolutional neural networks. In: 2018 Chinese Control and Decision Conference (CCDC), pp. 309–313. IEEE (2018) Li, P., Zhao, F., Li, Y., Zhu, Z.: Law text classification using semi-supervised convolutional neural networks. In: 2018 Chinese Control and Decision Conference (CCDC), pp. 309–313. IEEE (2018)
16.
Zurück zum Zitat Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014) Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)
17.
Zurück zum Zitat Sulea, O.-M., Zampieri, M., Vela, M., Van Genabith, J.: Predicting the law area and decisions of French supreme court cases. arXiv preprint arXiv:1708.01681 (2017) Sulea, O.-M., Zampieri, M., Vela, M., Van Genabith, J.: Predicting the law area and decisions of French supreme court cases. arXiv preprint arXiv:​1708.​01681 (2017)
18.
Zurück zum Zitat Wongchaisuwat, P., Klabjan, D., McGinnis, J.O.: Predicting litigation likelihood and time to litigation for patents. In: Proceedings of the 16th Edition of the International Conference on Artificial Intelligence and Law, pp. 257–260. ACM (2017) Wongchaisuwat, P., Klabjan, D., McGinnis, J.O.: Predicting litigation likelihood and time to litigation for patents. In: Proceedings of the 16th Edition of the International Conference on Artificial Intelligence and Law, pp. 257–260. ACM (2017)
19.
Metadaten
Titel
Which Bills Are Lobbied? Predicting and Interpreting Lobbying Activity in the US
verfasst von
Ivan Slobozhan
Peter Ormosi
Rajesh Sharma
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_23