Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

01.09.2015 | Ausgabe 3/2015 Open Access

Software Quality Journal 3/2015

Which process metrics can significantly improve defect prediction models? An empirical study

Zeitschrift:
Software Quality Journal > Ausgabe 3/2015
Autoren:
Lech Madeyski, Marian Jureczko

Abstract

The knowledge about the software metrics which serve as defect indicators is vital for the efficient allocation of resources for quality assurance. It is the process metrics, although sometimes difficult to collect, which have recently become popular with regard to defect prediction. However, in order to identify rightly the process metrics which are actually worth collecting, we need the evidence validating their ability to improve the product metric-based defect prediction models. This paper presents an empirical evaluation in which several process metrics were investigated in order to identify the ones which significantly improve the defect prediction models based on product metrics. Data from a wide range of software projects (both, industrial and open source) were collected. The predictions of the models that use only product metrics (simple models) were compared with the predictions of the models which used product metrics, as well as one of the process metrics under scrutiny (advanced models). To decide whether the improvements were significant or not, statistical tests were performed and effect sizes were calculated. The advanced defect prediction models trained on a data set containing product metrics and additionally Number of Distinct Committers (NDC) were significantly better than the simple models without NDC, while the effect size was medium and the probability of superiority (PS) of the advanced models over simple ones was high (\(p=.016\), \(r=-.29\), \(\hbox {PS}=.76\)), which is a substantial finding useful in defect prediction. A similar result with slightly smaller PS was achieved by the advanced models trained on a data set containing product metrics and additionally all of the investigated process metrics (\(p=.038\), \(r=-.29\), \(\hbox {PS}=.68\)). The advanced models trained on a data set containing product metrics and additionally Number of Modified Lines (NML) were significantly better than the simple models without NML, but the effect size was small (\(p=.038\), \(r=.06\)). Hence, it is reasonable to recommend the NDC process metric in building the defect prediction models.

Unsere Produktempfehlungen

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2015

Software Quality Journal 3/2015 Zur Ausgabe

EditorialNotes

In this issue

Premium Partner

    Bildnachweise