Skip to main content
Erschienen in: Microsystem Technologies 12/2017

26.05.2017 | Technical Paper

Wide bandwidth 2-DoF electromagnetic MEMS energy harvester for low g applications

verfasst von: Muhammad Mubasher Saleem, Adnan Murtaza Danish, Javed Iqbal, Shafaat Ahmed Bazaz

Erschienen in: Microsystem Technologies | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the design of a 2-DoF electromagnetic MEMS energy harvester, optimized to be realized using commercially available microfabrication processes. The proposed 2-DoF system consists of two inter-connected vibrating masses to achieve dynamically amplified displacement amplitude, at low-frequency and low-g vibrations with wide operational bandwidth. The vibrating microstructure, with sputtered NdFeB magnets, is designed considering microfabrication constraints of MetalMUMPs process. The stationary planar microcoils are designed using 0.35 μm CMOS MIMOS process. The vibrating microstructure and stationary planar microcoils are bonded together using photoresist with thickness of 30 μm. The magnets are arranged in a Halbach array configuration to concentrate the magnetic field on the stationary microcoils side while cancelling the field nearly zero on the other side. The input acceleration value with respect to overall damping is optimized, for a structurally limited gap of 160 μm between the inner and outer mass of the 2-DoF vibrating system, using design of experiments (DOE) based response surface models. For the proposed design, two resonant frequencies of 40.7 and 89.6 Hz are obtained with an operational bandwidth of 49 Hz. With an input acceleration value of 0.442g, an induced voltage of 18 mV and output power of 0.82 nW is btained at the first resonant frequency while an induced voltage of 14 mV and output power of 0.54 nW is obtained at the second resonant frequency. The normalized power density of the proposed energy harvester design is 7.94 × 10−7 (W/cm3/g2) at 40.7 Hz, with an overall device volume of 0.0058 cm3.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aktakka EE, Najafi K (2014) A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J Solid State Circuits 49(9):2017–2029CrossRef Aktakka EE, Najafi K (2014) A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J Solid State Circuits 49(9):2017–2029CrossRef
Zurück zum Zitat Ashraf K, Khir MM, Dennis JO, Baharudin Z (2013) Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies. Sens Actuators A Phys 195:123–132CrossRef Ashraf K, Khir MM, Dennis JO, Baharudin Z (2013) Improved energy harvesting from low frequency vibrations by resonance amplification at multiple frequencies. Sens Actuators A Phys 195:123–132CrossRef
Zurück zum Zitat Beeby SP, Tudor MJ, Koukharenko E, White NM, O’Donnell T, Saha C, Kulkarni S, Roy S (2005) Design and performance of a microelectromagnetic vibration powered generator. In: 13th International Conference on solid-state sensors, actuators and microsystems, pp 780–783 Beeby SP, Tudor MJ, Koukharenko E, White NM, O’Donnell T, Saha C, Kulkarni S, Roy S (2005) Design and performance of a microelectromagnetic vibration powered generator. In: 13th International Conference on solid-state sensors, actuators and microsystems, pp 780–783
Zurück zum Zitat Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175CrossRef
Zurück zum Zitat Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257–1265CrossRef Beeby SP, Torah RN, Tudor MJ, Glynne-Jones P, O’Donnell T, Saha CR, Roy S (2007) A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng 17(7):1257–1265CrossRef
Zurück zum Zitat Bouendeu E, Greiner A, Smith PJ, Korvink JG (2011) Design synthesis of electromagnetic vibration-driven energy generators using a variational formulation. J Microelectromech Syst 20(2):466–475CrossRef Bouendeu E, Greiner A, Smith PJ, Korvink JG (2011) Design synthesis of electromagnetic vibration-driven energy generators using a variational formulation. J Microelectromech Syst 20(2):466–475CrossRef
Zurück zum Zitat Chen SJ, Wu JY (2016) Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening. Smart Mater Struct 25(9):095047CrossRef Chen SJ, Wu JY (2016) Fabrication of a 2-DOF electromagnetic energy harvester with in-phase vibrational bandwidth broadening. Smart Mater Struct 25(9):095047CrossRef
Zurück zum Zitat Cowen A, Dudley B, Hill E, Walters M, Wood R, Johnson S, Wynands H, Hardy B (2002) MetalMUMPs design handbook. MEMSCap Inc., NC Cowen A, Dudley B, Hill E, Walters M, Wood R, Johnson S, Wynands H, Hardy B (2002) MetalMUMPs design handbook. MEMSCap Inc., NC
Zurück zum Zitat Dick B, Fralick M, Jazo H, Kerber M, Brewer J, Waters R (2009) Optimization of kinetic energy harvester for low amplitude vibration. In: Sensors, Christchurch, pp 1840–1843 Dick B, Fralick M, Jazo H, Kerber M, Brewer J, Waters R (2009) Optimization of kinetic energy harvester for low amplitude vibration. In: Sensors, Christchurch, pp 1840–1843
Zurück zum Zitat Erismis MA (2013) Design and modeling of a new robust multi-mass coupled-resonator family with dynamic motion amplification. Microsyst Technol 19(8):1105–1110CrossRef Erismis MA (2013) Design and modeling of a new robust multi-mass coupled-resonator family with dynamic motion amplification. Microsyst Technol 19(8):1105–1110CrossRef
Zurück zum Zitat Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20(4):852–866 Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20(4):852–866
Zurück zum Zitat Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A Phys 110(1):344–349CrossRef Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A Phys 110(1):344–349CrossRef
Zurück zum Zitat Han M, Yuan Q, Sun X, Zhang H (2014) Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. J Microelectromech Syst 23(1):204–212CrossRef Han M, Yuan Q, Sun X, Zhang H (2014) Design and fabrication of integrated magnetic MEMS energy harvester for low frequency applications. J Microelectromech Syst 23(1):204–212CrossRef
Zurück zum Zitat Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Microsyst Technol 20(4–5):627–640CrossRef Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Microsyst Technol 20(4–5):627–640CrossRef
Zurück zum Zitat Jiang Y, Masaoka S, Fujita T, Uehara M, Toyonaga T, Fujii K, Higuchi K, Maenaka K (2011) Fabrication of a vibration-driven electromagnetic energy harvester with integrated NdFeB/Ta multilayered micro-magnets. J Micromech Microeng 21(9):095014CrossRef Jiang Y, Masaoka S, Fujita T, Uehara M, Toyonaga T, Fujii K, Higuchi K, Maenaka K (2011) Fabrication of a vibration-driven electromagnetic energy harvester with integrated NdFeB/Ta multilayered micro-magnets. J Micromech Microeng 21(9):095014CrossRef
Zurück zum Zitat Jo SE, Kim MS, Kim YJ (2012) Electromagnetic human vibration energy harvester comprising planar coils. Electron Lett 48(14):874–875CrossRef Jo SE, Kim MS, Kim YJ (2012) Electromagnetic human vibration energy harvester comprising planar coils. Electron Lett 48(14):874–875CrossRef
Zurück zum Zitat Koukharenko E, Beeby SP, Tudor MJ, White NM, O’Donnell T, Saha C, Kulkarni S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst Technol 12(10–11):1071–1077CrossRef Koukharenko E, Beeby SP, Tudor MJ, White NM, O’Donnell T, Saha C, Kulkarni S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst Technol 12(10–11):1071–1077CrossRef
Zurück zum Zitat Kulkarni S, Roy S, O’Donnell T, Beeby S, Tudor J (2006) Vibration based electromagnetic micropower generator on silicon. J Appl Phys 99(8):08P511-1–08P511-3CrossRef Kulkarni S, Roy S, O’Donnell T, Beeby S, Tudor J (2006) Vibration based electromagnetic micropower generator on silicon. J Appl Phys 99(8):08P511-1–08P511-3CrossRef
Zurück zum Zitat Le CP, Halvorsen E (2012) MEMS electrostatic energy harvesters with end-stop effects. J Micromech Microeng 22(7):074013CrossRef Le CP, Halvorsen E (2012) MEMS electrostatic energy harvesters with end-stop effects. J Micromech Microeng 22(7):074013CrossRef
Zurück zum Zitat Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806CrossRef Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806CrossRef
Zurück zum Zitat Liu H, Soon BW, Wang N, Tay CJ, Quan C, Lee C (2012) Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes. J Micromech Microeng 22(12):125020CrossRef Liu H, Soon BW, Wang N, Tay CJ, Quan C, Lee C (2012) Feasibility study of a 3D vibration-driven electromagnetic MEMS energy harvester with multiple vibration modes. J Micromech Microeng 22(12):125020CrossRef
Zurück zum Zitat Liu H, Qian Y, Lee C (2013) A multi-frequency vibration-based MEMS electromagnetic energy harvesting device. Sens Actuators A Phys 204:37–43CrossRef Liu H, Qian Y, Lee C (2013) A multi-frequency vibration-based MEMS electromagnetic energy harvesting device. Sens Actuators A Phys 204:37–43CrossRef
Zurück zum Zitat Liu H, Koh KH, Lee C (2014) Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Appl Phys Lett 104(5):053901CrossRef Liu H, Koh KH, Lee C (2014) Ultra-wide frequency broadening mechanism for micro-scale electromagnetic energy harvester. Appl Phys Lett 104(5):053901CrossRef
Zurück zum Zitat Mallick D, Roy S (2015) Bidirectional electrical tuning of FR4 based electromagnetic energy harvesters. Sens Actuators A Phys 226:154–1562CrossRef Mallick D, Roy S (2015) Bidirectional electrical tuning of FR4 based electromagnetic energy harvesters. Sens Actuators A Phys 226:154–1562CrossRef
Zurück zum Zitat Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. In: IEEE 25th International Conference on micro electro mechanical systems (MEMS), Paris, pp 1221–1224 Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. In: IEEE 25th International Conference on micro electro mechanical systems (MEMS), Paris, pp 1221–1224
Zurück zum Zitat Nguyen DS, Halvorsen E, Jensen GU, Vogl A (2010) Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J Micromech Microeng 20(12):125009CrossRef Nguyen DS, Halvorsen E, Jensen GU, Vogl A (2010) Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs. J Micromech Microeng 20(12):125009CrossRef
Zurück zum Zitat Park JC, Bang DH, Park JY (2010) Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. IEEE Trans Magn 46(6):1937–1942CrossRef Park JC, Bang DH, Park JY (2010) Micro-fabricated electromagnetic power generator to scavenge low ambient vibration. IEEE Trans Magn 46(6):1937–1942CrossRef
Zurück zum Zitat Priya S, Inman DJ (2009) Energy harvesting technologies. Springer, New YorkCrossRef Priya S, Inman DJ (2009) Energy harvesting technologies. Springer, New YorkCrossRef
Zurück zum Zitat Saha CR, O’donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147(1):248–253CrossRef Saha CR, O’donnell T, Wang N, McCloskey P (2008) Electromagnetic generator for harvesting energy from human motion. Sens Actuators A Phys 147(1):248–253CrossRef
Zurück zum Zitat Saleem MM, Somá A (2015) Design of experiments based factorial design and response surface methodology for MEMS optimization. Microsyst Technol 21(1):263–276CrossRef Saleem MM, Somá A (2015) Design of experiments based factorial design and response surface methodology for MEMS optimization. Microsyst Technol 21(1):263–276CrossRef
Zurück zum Zitat Saleem MM, Somà A (2015) Design optimization of RF-MEMS switch considering thermally induced residual stress and process uncertainties. Microelectron Reliab 55(11):2284–2298CrossRef Saleem MM, Somà A (2015) Design optimization of RF-MEMS switch considering thermally induced residual stress and process uncertainties. Microelectron Reliab 55(11):2284–2298CrossRef
Zurück zum Zitat Shi Q, Wang T, Lee C (2016) MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci Rep 6:24946CrossRef Shi Q, Wang T, Lee C (2016) MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci Rep 6:24946CrossRef
Zurück zum Zitat Smilek J, Hadas Z (2015) A study of kinetic energy harvesting for biomedical application in the head area. Microsyst Technol 22(7):1535–1547CrossRef Smilek J, Hadas Z (2015) A study of kinetic energy harvesting for biomedical application in the head area. Microsyst Technol 22(7):1535–1547CrossRef
Zurück zum Zitat Tao K, Ding G, Wang P, Yang Z, Wang Y (2012). Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. In: IEEE 25th International Conference on micro electro mechanical systems (MEMS), Paris, pp 1237–1240 Tao K, Ding G, Wang P, Yang Z, Wang Y (2012). Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. In: IEEE 25th International Conference on micro electro mechanical systems (MEMS), Paris, pp 1237–1240
Zurück zum Zitat Tao K, Liu S, Lye S, Miao JM, Hu X (2014) A threedimensional electret-based micro power generator for lowlevel ambient vibrational energy harvesting. J Micromech Microeng 24:065022CrossRef Tao K, Liu S, Lye S, Miao JM, Hu X (2014) A threedimensional electret-based micro power generator for lowlevel ambient vibrational energy harvesting. J Micromech Microeng 24:065022CrossRef
Zurück zum Zitat Tao K, Lye SW, Miao JM, Tang LH, Hu X (2015) Out-of- plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. J Micromech Microeng 25(10):104014CrossRef Tao K, Lye SW, Miao JM, Tang LH, Hu X (2015) Out-of- plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. J Micromech Microeng 25(10):104014CrossRef
Zurück zum Zitat Tao K, Wu J, Tang L, Xia X, Lye SW, Miao J, Hu X (2016) A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. J Micromech Microeng 26(3):035020CrossRef Tao K, Wu J, Tang L, Xia X, Lye SW, Miao J, Hu X (2016) A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. J Micromech Microeng 26(3):035020CrossRef
Zurück zum Zitat Torah RN, Tudor MJ, Patel K, Garcia IN, Beeby SP (2007) Autonomous low power microsystem powered by vibration energy harvesting. In: Sensors, Atlanta, pp 264–267 Torah RN, Tudor MJ, Patel K, Garcia IN, Beeby SP (2007) Autonomous low power microsystem powered by vibration energy harvesting. In: Sensors, Atlanta, pp 264–267
Zurück zum Zitat Torah R, Glynne-Jones P, Tudor M, O’Donnell T, Roy S, Beeby S (2008) Self-powered autonomous wireless sensor node using vibration energy harvesting. Meas Sci Technol 19(12):125202CrossRef Torah R, Glynne-Jones P, Tudor M, O’Donnell T, Roy S, Beeby S (2008) Self-powered autonomous wireless sensor node using vibration energy harvesting. Meas Sci Technol 19(12):125202CrossRef
Zurück zum Zitat Wang N, Arnold DP (2009) Fully batch-fabricated MEMS magnetic vibrational energy harvesters. In: Power-MEMS, Washington DC, pp 348–351 Wang N, Arnold DP (2009) Fully batch-fabricated MEMS magnetic vibrational energy harvesters. In: Power-MEMS, Washington DC, pp 348–351
Zurück zum Zitat Wang P, Dai X, Yang Z, Wang Z, Zhao X (2012) Development of microelectromechanical systems electromagnetic vibration energy scavengers with a nonlinear electroplated nickel spring. Micro Nano Lett 7(12):1173–1175CrossRef Wang P, Dai X, Yang Z, Wang Z, Zhao X (2012) Development of microelectromechanical systems electromagnetic vibration energy scavengers with a nonlinear electroplated nickel spring. Micro Nano Lett 7(12):1173–1175CrossRef
Zurück zum Zitat Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A Phys 52(1):8–11CrossRef Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sens Actuators A Phys 52(1):8–11CrossRef
Zurück zum Zitat Williams CB, Shearwood C, Harradine MA, Mellor PH, Birch TS, Yates RB (2001) Development of an electromagnetic micro-generator. IEE Proc Circuits Devices Syst 148(6):337–342CrossRef Williams CB, Shearwood C, Harradine MA, Mellor PH, Birch TS, Yates RB (2001) Development of an electromagnetic micro-generator. IEE Proc Circuits Devices Syst 148(6):337–342CrossRef
Zurück zum Zitat Xing X, Yang GM, Liu M, Lou J, Obi O, Sun NX (2011) High power density vibration energy harvester with high permeability magnetic material. J Appl Phys 109(7):07E514CrossRef Xing X, Yang GM, Liu M, Lou J, Obi O, Sun NX (2011) High power density vibration energy harvester with high permeability magnetic material. J Appl Phys 109(7):07E514CrossRef
Zurück zum Zitat Xu Z, Shan X, Chen D, Xie T (2016) A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Appl Sci 6(1):10. doi:10.3390/app6010010 CrossRef Xu Z, Shan X, Chen D, Xie T (2016) A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Appl Sci 6(1):10. doi:10.​3390/​app6010010 CrossRef
Zurück zum Zitat Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16(6):961–966CrossRef Yang B, Lee C (2010) Non-resonant electromagnetic wideband energy harvesting mechanism for low frequency vibrations. Microsyst Technol 16(6):961–966CrossRef
Zurück zum Zitat Zhang Q, Kim ES (2015) Micromachined energy-harvester stack with enhanced electromagnetic induction through vertical integration of magnets. J Microelectromech Syst 24(2):384–394CrossRef Zhang Q, Kim ES (2015) Micromachined energy-harvester stack with enhanced electromagnetic induction through vertical integration of magnets. J Microelectromech Syst 24(2):384–394CrossRef
Zurück zum Zitat Zhang Q, Chen SJ, Baumgartel L, Lin A, Kim ES (2011) Microelectromagnetic energy harvester with integrated magnets. In: 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, pp 1657–1660 Zhang Q, Chen SJ, Baumgartel L, Lin A, Kim ES (2011) Microelectromagnetic energy harvester with integrated magnets. In: 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, pp 1657–1660
Zurück zum Zitat Zhang Q, Wang Y, Zhao L, Kim ES (2016) Integration of microfabricated low resistance and thousand-turn coils for vibration energy harvesting. J Micromech Microeng 26(2):025019CrossRef Zhang Q, Wang Y, Zhao L, Kim ES (2016) Integration of microfabricated low resistance and thousand-turn coils for vibration energy harvesting. J Micromech Microeng 26(2):025019CrossRef
Zurück zum Zitat Zhu D, Roberts S, Tudor MJ, Beeby SP (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens Actuators A Phys 158(2):284–293CrossRef Zhu D, Roberts S, Tudor MJ, Beeby SP (2010) Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens Actuators A Phys 158(2):284–293CrossRef
Metadaten
Titel
Wide bandwidth 2-DoF electromagnetic MEMS energy harvester for low g applications
verfasst von
Muhammad Mubasher Saleem
Adnan Murtaza Danish
Javed Iqbal
Shafaat Ahmed Bazaz
Publikationsdatum
26.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3449-y

Weitere Artikel der Ausgabe 12/2017

Microsystem Technologies 12/2017 Zur Ausgabe

Neuer Inhalt