Skip to main content

2019 | OriginalPaper | Buchkapitel

7. Wind and Aerodynamics

verfasst von : Giovanni Solari

Erschienen in: Wind Science and Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The knowledge about aerodynamic actions is vitally important in many fields, such as those involving structures and transportation. Facing such issues, This chapter illustrates the experimental techniques that appeared around the end of the nineteenth century to measure aerodynamic actions, first of all the technology that represents the symbol of this discipline: the wind tunnel. It also describes the pioneering stage during which this device was aimed at every type of test, and then, the appearance of facilities specialized in various sectors, first of all those aiming to reproduce the atmospheric boundary layer, then those addressed to aircrafts, sailing boats, road and rail vehicles. The evolution of aerodynamic knowledge is overshadowed by the driving role of aeronautics. Relying on the huge impact of the first flights, it inspired an increasingly stricter relationship between theory and experimentation focusing on the study of wings and originating analytical methods and experimental techniques destined to impact on several sectors, first and above all wind actions and effects on structures and transportation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The force coefficient is a non-dimensional quantity defined as \( c_\text{F} = 2F/\left( {\uprho V^{2} A} \right) \), where F is the force exerted by a fluid on a body, ρ is the fluid density, V is the relative speed between the body and the fluid and A is the reference surface of the body.
 
2
The pressure coefficient is a non-dimensional quantity defined as \( c_{p} = 2\left( {p - p_{0} } \right)/\left( {\uprho V^{2} } \right) \), where p is the pressure at a point of the body surface, p0 is a reference value of p associated to undisturbed conditions, ρ is the fluid density and V is the relative speed between the body and the fluid.
 
3
Whereas the flow in the wind tunnel was uniform, the actual wind showed quick fluctuations that were not detected by the Pitot tube.
 
4
Irminger’s pressure measurements anticipated by a decade similar measurements carried out by Nipher by means of a locomotive (Sect. 7.1).
 
5
Marey was interested in all forms of motion; he studied the heart cycle, breathing, muscular contraction and motorial coordination. This forced him to invent instruments thanks to which he is considered a pioneer of photography and cinematography. He is famous for his photographic studies about horse gallop, showing for the first time the moment when the horse has its four legs lifted above the ground, and about bird flight, an act described in such detail to become a reference point for aeronautics studies (Sect. 7.4). His books (La machine animale, 1873; Le vol des oiseaux, 1890; and Le mouvement, 1894) will arise the interest of the Wright brothers, giving an essential contribution to aviation.
 
6
According to Irminger and Nøkkentved, the internal pressure pi in partially open buildings was:
$$ \sum\limits_{j} {A_{j} \sqrt {p_{j} - p_{i} } } = 0 $$
where Aj is the area of the jth opening, and pj is its external pressure; the sum is extended to all the openings. In comparison with the formula used today to express the quasi-steady mass conservation (Sect. 8.​6), the opening shape coefficient is missing. Moreover, the rule about the signs for the emission or introduction of air into the building was not defined.
 
7
This definition is different from the one used in fluid dynamics (Sect. 5.​1).
 
8
This sentence did not appear, except in a cryptic form, in the original paper by Nøkkentved. So, it represented an anticipation, due to Bailey and Vincent, of the concepts soon to be expressed by Jensen.
 
9
In the mid-1980s, the University of Western Ontario awarded Martin Jensen a Honoris Causa Doctorate with the “Bridge builder” motivation, “in recognition of his achievements (…) in building bridges between different fields of knowledge”. His doctorate thesis on wind sheltering was a bridge between aerodynamics and agriculture. The model law for phenomena in natural wind was a bridge between full-scale and model tests wind effects. His studies on the flight of the locusts were a bridge between aerodynamics and zoology. His book Civil engineering around 1700 (1969) was a bridge between past and present construction methods. What’s more, Jensen was an excellent civil engineer, the builder of many bridges, including the Lillebaelt Bridge.
 
10
Jensen first evaluated the roughness length through the gradient of the logarithmic scale profile. He then determined the same quantity by comparing the evolution of the measured thickness of the boundary layer with Eq. (5.​23), obtaining almost coincident results.
 
11
\( s = \left( {v_{0} - v} \right)/v_{0} \), where v is the actual wind speed at a set height z, v0 is the speed that would exist at the same location in the absence of the barrier.
 
12
Lilienthal is considered by many as the first man to have lifted himself above the ground on a flying device. Actually, at least five individuals flew before him: the two pilots to whom Cayley entrusted his gliders (Sect. 4.​5), the French Jean Marie le Bris (1817–1872) and Louis Pierre Mouillard (1834–1897), and the American John Joseph Montgomery (1858–1911). All of them returned to the ground so scared to refuse any further flying experience; Lilienthal was the first that continued with his attempts, improving his performance [75].
 
13
Consider a wing in uniform motion, subjected to an aerodynamic moment countered by an elastic moment. The resisting elastic moment does not depend on the speed, while the aerodynamic moment increases with its square. There is a speed, thus, above which the elastic moment is insufficient to counter the aerodynamic action. It is called critical divergence speed and the associated unstable phenomenon, of a static nature, is called torsional divergence.
 
14
Some bibliographic sources attribute the first powered flight to other aviators [78]. In 1874, a French Navy officer, Félix du Temple de la Croix (1823–1890), put a subordinate of his on an aircraft powered by a steam engine that made small leaps along the slope of a hill. In 1884, Alexander Fedorovich Mozhayskiy (1825–1890), a Russian Navy officer, used a launching ramp near Krasnoye Selo to make a leap approximately 25 m long with a powered aircraft. Gustav Albin Weisskopf (1874–1927), a German emigrated to America, made several powered flights two years before the Wright brothers without any photographic evidence. Another German, Karl Jatho (1873–1933) made some flights with an aircraft with flat wings, a 2-blade propeller and a 10 HP engine; the first flight dates back to 18 August 1903; the longest flight covered a distance of 200 m at 3 m height without any control system.
 
15
The chronicle from Kitty Hawk dated 18 December 1903 reported: “Mankind wished to fly since the time of Icarus. From yesterday it is a reality. On the beach of Kitty Hawk, North Carolina, two bicycle builders, Wilbur and Orville Wright, made the first powered heavier-than-air craft fly”.
 
16
Selfridge was the first victim of a powered flight. After having flown on Bell’s airplanes, he flied with the Wright brothers during an exhibition. On 17 September 1908, Flyer, piloted by Orville Wright with Selfridge beside him, crashed to the ground: Orville Wright was unharmed, but Selfridge died.
 
17
The aileron is the moving part of the wing along the trailing edge; it is lifted or lowered to change the lift, especially at the landing stage.
 
18
The first flights of the Wright brothers, unlike Santos-Dumont’s one, were assisted during the take-off by tail winds or by launch tracks. Their supporters countered that such devices were not used for aerodynamic reasons, but due to the nature of the ground: while the ground at Kitty Hawk and Huffman Prairie was sandy, Santos-Dumont took off from smooth and compact ground.
 
19
Even though Aerodynamics [91] was a book dedicated to wings, Lanchester described therein a phenomenon, the “aerial turbillon”, associated with cylinders with D-shaped cross-section. When the flat face is orthogonal to a uniform flow, the cylinder developed a steady rotation around its axis, as long as the latter was triggered (Sect. 9.​8).
 
20
The Kutta–Joukowski theory envisaged that the lift coefficient was a linear function of the angle of attack (Fig. 7.44). When the angle of attack is large, the flow detaches from the wing surface and the theory fails. There is an angle of attack above which lift starts decreasing. This causes stalling.
 
21
Lanchester was embittered for the appreciation received by Prandtl and the slight recognition to his contribution (reviewed after his death) [20]. In his Wilbur Wright Memorial Lecture at the Royal Aeronautical Society in 1927, Prandtl said that Lanchester “started working on this subject before I did and this undoubtedly led people to believe that Lanchester’s researches, as they had been expressed in 1907 in his work Aerodynamics, suggested me the principles on which the airfoil theory was based. But this was not my case. The basic ideas on which I built that theory, even though those ideas were included in Lanchester’s book, came to my mind before I saw his book. To corroborate this statement, I will point out that actually we, in Germany, were more prepared to understand Lanchester’s book when it appeared than you in England”.
 
22
Consider a wing in a tunnel in the absence of wind, a generic disturbance originates a damped oscillation. Assume the introduction of air into the tunnel and a speed increase: the damping initially increases, then decreases. The flutter speed is the one that makes the damping nil. Actually, the wing motion is both bending and torsional. If the wing is only subjected to bending oscillation flutter cannot occur. If it is only subjected to torsional oscillation flutter is possible only if the angle of attack is close to the stall condition (and the flow is separated); this unstable phenomenon is called stall flutter. Excluding it, flutter is only possible in the presence of the coupling of at least two degrees of freedom, generally the bending motion perpendicular to the flow direction and the torsional motion. Both these motions are harmonic ones with the same frequency; all the components of the bending motions are in phase; likewise, all the components of the torsional motion are also in phase; the two components of the motion are out of phase.
 
23
The modified Bessel functions of the second and of the first type are defined, respectively, as:
$$ I_{\upalpha } \left( x \right) = i^{ - \upalpha } J_{\upalpha } \left( {ix} \right);\quad K_{\upalpha } \left( x \right) = \frac{\uppi }{2}\frac{{I_{ - \upalpha } \left( x \right) - I_{\upalpha } \left( x \right)}}{{\sin \left( {\upalpha x} \right)}} $$
where \( J_{\upalpha } \left( x \right) \) is the Bessel function of the first type (Eq. 7.9a).
 
24
Disregarding the aileron, the lift and the moment acting on the wing because of its vertical displacement and of its rotation can be expressed as:
$$ L_{h} = \frac{1}{2}\uprho U^{2} \left( {2b} \right)C_{\text{L}} \left( {\dot{h},\ddot{h},\upalpha ,\dot{\upalpha },\ddot{\upalpha }} \right);\quad M_{\upalpha } = \frac{1}{2}\uprho U^{2} \left( {2b} \right)^{2} C_{\text{M}} \left( {\dot{h},\ddot{h},\upalpha ,\dot{\upalpha },\ddot{\upalpha }} \right) $$
where CL and CM are aerodynamic coefficients that are linear functions of h, α and of their prime and second derivatives with respect to time:
$$ \begin{aligned} C_{\text{L}} &= 2\uppi \left\{ {\left( {\upalpha + \frac{{\dot{h}}}{U}} \right)C\left( k \right) + \frac{{b\dot{\upalpha }}}{2U}\left[ {1 + C\left( k \right)} \right] + \frac{{b\ddot{h}}}{{2U^{2} }}} \right\};\\ C_{\text{M}} &= \frac{\uppi }{2}\left\{ {\left( {\upalpha + \frac{{\dot{h}}}{U}} \right)C\left( k \right) - \frac{{b\dot{\upalpha }}}{2U}\left[ {1 - C\left( k \right)} \right] - \frac{{b^{2} \ddot{\upalpha }}}{{8U^{2} }}} \right\} \end{aligned} $$
Bridge aeroelasticity initially made use of Theodorsen formulas, identifying the deck with a thin plate (Sects. 9.​2 and 9.​9). This trend continued until Robert Scanlan (1914–2001) unified the analyses (Sect. 11.​1). Disregarding the inertial aerodynamic terms, he rewrote the aeroelastic coefficients as:
$$ C_{\text{L}} = kH_{1}^{*} \left( k \right)\frac{{\dot{h}}}{U} + kH_{2}^{*} \left( k \right)\frac{{b\dot{\upalpha }}}{U} + k^{2} H_{3}^{*} \left( k \right)\upalpha ;\quad C_{\text{M}} = kA_{1}^{*} \left( k \right)\frac{{\dot{h}}}{U} + kA_{2}^{*} \left( k \right)\frac{{b\dot{\upalpha }}}{U} + k^{2} A_{3}^{*} \left( k \right)\upalpha $$
\( H_{i}^{*}, A_{i}^{*} \;\left( i = 1,2,3 \right) \) being the aerodynamic or flutter derivatives. For a thin plate or an airfoil, they are linked to the Theodorsen function by the relationships:
$$ \begin{aligned} & H_{1}^{*} \left( k \right) = - \frac{2\uppi F\left( k \right)}{k};\;H_{2}^{*} \left( k \right) = - \frac{\uppi }{k}\left[ {1 + F\left( k \right) + \frac{2G\left( k \right)}{k}} \right];\;H_{3}^{*} \left( k \right) = - \frac{2\uppi }{{k^{2} }}\left[ {F\left( k \right) - \frac{kG\left( k \right)}{2}} \right] \\ & A_{1}^{*} \left( k \right) = \frac{\uppi F\left( k \right)}{k};\;A_{2}^{*} \left( k \right) = - \frac{\uppi }{2k}\left[ {1 - F\left( k \right) - \frac{2G\left( k \right)}{k}} \right];\;A_{3}^{*} \left( k \right) = \frac{\uppi }{{k^{2} }}\left[ {F\left( k \right) - \frac{kG\left( k \right)}{2}} \right] \\ \end{aligned} $$
In the case of bridge decks, these expressions have to be obtained through wind tunnel tests [128].
 
25
Scruton worked at the Aerodynamics Department of the NPL from 1929. Prompted by the researches carried out by Frazer and Duncan in 1928 [124, 125], he initially devoted himself to study the added mass of the air, tuned mass dampers and flutter derivatives. Transposing his experience in aeronautics to the structural sector, he made an essential contribution to the foundation of wind engineering.
 
26
The lift of a wing in a sudden upward flow w is given by Eq. (7.6), Ψ being the Küssner function. For any flow path, the lift is given by the convolution:
$$ L\left( s \right) = 2\uppi \uprho bU^{2} \int\limits_{0}^{\infty } {w\left( {s - s^{\prime}} \right)\Psi^{\prime}\left( {s^{\prime}} \right)\text{d}s^{\prime}} $$
where Ψ′ is the prime derivative of Ψ. For an harmonic flow, the lift is given by Eq. (7.19), Θ being linked with Ψ and Ψ′ through the relationship [143]:
$$ \Theta \left( k \right) = \int_{0}^{\infty } {\Psi^{\prime}\left( s \right)\exp \left( { - iks} \right)\text{d}s} = ik\int_{0}^{\infty } {\Psi \left( s \right)\exp \left( { - iks} \right)\text{d}s} $$
 
27
Herreshoff brought grace, beauty, speed and design innovations into yachting. He literally is to yachting as Einstein is to science and Picasso to art.
 
28
The first historical source of surfing is contained in the log of James Cook (1728–1779), the man who discovered Hawaii islands; he told the feats of the Polynesians, described as people who enjoyed being carried by waves riding on wood boards. The surfing, banned in the age of colonisation by Calvinist missionaries because of the exposed naked bodies, made its comeback in the late nineteenth century. The credit for its diffusion goes to Duke Paoa Kahinu Mokoe Hulikohola Kahanamoku (1890–1968), a swimming champion who toured the world for swimming and surfing exhibitions. Thomas Edward Blake (1902–1994) met Kahanamoku in 1920 and was fascinated by him. He first devoted himself to surfing in Santa Monica, and then, he moved to Hawai Islands, in Waikiki. Here, in 1931, Blake conceived the idea of equipping his board with a sail; he first used an umbrella, then implemented the 1935 solution.
 
29
Since Edge’s Napier was faster than Jenatzy’s Jamaise Content, both Chasseloup-Laubat and Jenatzy records were little related to car aerodynamics.
 
30
The base of the body is shaped like a wing profile; a volume, the “windshield cockpit” rested over it; and the cockpit copied the shape of a dirigible, with the difference of being located on the upper side.
 
31
Segrave repeatedly beat the speed records on land and on water. He was the sole pilot that simultaneously held the two records. In 1926, he reached 245.149 km/h aboard “Ladybird”. In 1927 he reached 327.97 km/h aboard “Mystery”. In 1929, in Daytona Beach, he reached 372.46 km/h aboard “Golden Arrow”. In 1930 he won the water record. In the same year, he beat his own record a few seconds before overturning and losing his life.
 
32
In 1939 the Mercedes-Benz T80 used, for the first time, vertical fins and horizontal wings with negative lift. In the same year, Josef Mickl patented a system of wings offsetting side actions. Kamm developed aerodynamic solutions to achieve car stability at high speeds. In 1947, John Rhodes Cobb (1899–1952) set the record of 634.39 km/h with Railton Mobil Special. Few years later, he died on Loch Ness while attempting to beat Segraves record on water.
 
33
“Dymaxion” was the acronym of “DYnamic MAXimum tensION”. It indicated any project aimed at improving the living conditions of mankind.
 
34
The previous record had been set in 1936 by a Deutsche Reichsbahn Class 05 4-6-4, which was the first locomotive to reach the speed of 200 km/h. Pennsylvania Railroad maintained its S1 steam locomotive reached a speed of 225 km/h; this possible record, however, was not documented enough.
 
35
Ralph Budd (1879–1962), president of CB&Q, attributed great importance to the train name. He demanded that such name started with the Z letter so that the train was considered “the last word” in railway service. Unfortunately, he did not find the last two words of the American dictionary—zyzzle and zymurgy—attractive whereas he was impressed by The Canterbury tales and their description of “Zephyrus”, the “delicate and nourishing” west wind.
 
36
Henry Dreyfuss, initially an apprentice of Bel Geddes, rejected a merely stylistic view of design, imprinting his projects through choices inspired to technical and functional aspects. Besides its locomotives, he was known for the Bell phones that invaded the USA.
 
37
Besides locomotives, Raymond Loewy also tied his name to indelible images of cigarette packs, refrigerators, cars, helicopters, ships and logos (e.g. for Exxon and Shell), inspired to his motto, “beauty through function and simplification”. He was the designer of the Air France Concorde and of the Air Force One. At the peak of his career, over 75% of the American citizens came into contact, at least once in a day, with one of his products.
 
Literatur
1.
Zurück zum Zitat Eiffel G (1910) La resistance de l’air. Examen des formules at des expériences. H. Dunod et E. Pinat, Paris Eiffel G (1910) La resistance de l’air. Examen des formules at des expériences. H. Dunod et E. Pinat, Paris
2.
Zurück zum Zitat Bixby WH (1895) Wind pressures in engineering construction. Eng News 33:174–184 Bixby WH (1895) Wind pressures in engineering construction. Eng News 33:174–184
3.
Zurück zum Zitat Hagen G (1874) Messung des widerstandes den planscheiben erfahren wenn sie in normaler richtung gegen ihre ebene durch die luft bewegt werden. Akad. Abhandl, Berlin Hagen G (1874) Messung des widerstandes den planscheiben erfahren wenn sie in normaler richtung gegen ihre ebene durch die luft bewegt werden. Akad. Abhandl, Berlin
4.
Zurück zum Zitat Bender CB (1882) The design of structures to resist wind-pressure. Proc Inst Civil Eng 69:80–119 Bender CB (1882) The design of structures to resist wind-pressure. Proc Inst Civil Eng 69:80–119
5.
Zurück zum Zitat Perry TO (1899) Experiments with windmills. Department of the Interior, Water Supply and Immigration Papers, US Geological Survey 20, Washington, D.C. Perry TO (1899) Experiments with windmills. Department of the Interior, Water Supply and Immigration Papers, US Geological Survey 20, Washington, D.C.
6.
Zurück zum Zitat Dines WH (1889) Account of some experiments made to investigate the connection between the pressure and velocity of the wind. Q J R Meteor Soc 15:935–982 Dines WH (1889) Account of some experiments made to investigate the connection between the pressure and velocity of the wind. Q J R Meteor Soc 15:935–982
7.
Zurück zum Zitat Lilienthal O (1889) Der vogelflug als grundlage der fliegekunst. Revue de l’Aéronautique, 22 Lilienthal O (1889) Der vogelflug als grundlage der fliegekunst. Revue de l’Aéronautique, 22
8.
Zurück zum Zitat Anderson JD (1998) A history of aerodynamics. Cambridge University Press, UKMATH Anderson JD (1998) A history of aerodynamics. Cambridge University Press, UKMATH
9.
Zurück zum Zitat Langley SP (1891) Experiments in aerodynamics. Smithsonian contributions to knowledge, N. 801, Washington, D.C. Langley SP (1891) Experiments in aerodynamics. Smithsonian contributions to knowledge, N. 801, Washington, D.C.
10.
Zurück zum Zitat von Lössl F (1892) Die luftwiderstandsgesetze, del fall dusrch die luft und der vogelflug. Vienne von Lössl F (1892) Die luftwiderstandsgesetze, del fall dusrch die luft und der vogelflug. Vienne
11.
Zurück zum Zitat Tsiolkovsky KE (1951) Collected works of K.E. Tsiolkovsky, The Academy of Sciences of the USSR, Moscow, USSR (English Translation TTF-236, National Aeronautics and Space Administration) Tsiolkovsky KE (1951) Collected works of K.E. Tsiolkovsky, The Academy of Sciences of the USSR, Moscow, USSR (English Translation TTF-236, National Aeronautics and Space Administration)
12.
Zurück zum Zitat Reichel MW (1901) Train électrique à marche rapide. Elektotechnischen Zeitschrift, Zeitschrift des Ver. Deutscher Ing., LI Reichel MW (1901) Train électrique à marche rapide. Elektotechnischen Zeitschrift, Zeitschrift des Ver. Deutscher Ing., LI
13.
Zurück zum Zitat Finzi G, Soldati N (1903) Esperimenti sulla dinamica dei fluidi. Milan Finzi G, Soldati N (1903) Esperimenti sulla dinamica dei fluidi. Milan
14.
Zurück zum Zitat Cailletet L, Colardeau E (1892) Recherches expérimentales sur la chute des corps et sur la résistance de l’air à leur mouvement; expériences exécutées à la Tour Eiffel. Comptes rendus de la Société de l’Academie des Sciences, Paris, CXV Cailletet L, Colardeau E (1892) Recherches expérimentales sur la chute des corps et sur la résistance de l’air à leur mouvement; expériences exécutées à la Tour Eiffel. Comptes rendus de la Société de l’Academie des Sciences, Paris, CXV
15.
Zurück zum Zitat Le Dantec M (1899) Expériences sur la résistance de l’air. Bull Soc d’Encouragement l’Ind Nationale, IV, Series 5 Le Dantec M (1899) Expériences sur la résistance de l’air. Bull Soc d’Encouragement l’Ind Nationale, IV, Series 5
16.
Zurück zum Zitat Canovetti C (1907) Expériences sur le coefficient de la résistance de l’air. Bulletin de la Société des Ingénieurs civils de France, May Canovetti C (1907) Expériences sur le coefficient de la résistance de l’air. Bulletin de la Société des Ingénieurs civils de France, May
17.
Zurück zum Zitat Ricour M (1885) Notice sur le prix de revient de la traction et sur les économies réalisées par l’application de diverses modifications aux machines locomotives. Annales des Ponts et Chaussées, 2 Ricour M (1885) Notice sur le prix de revient de la traction et sur les économies réalisées par l’application de diverses modifications aux machines locomotives. Annales des Ponts et Chaussées, 2
18.
Zurück zum Zitat Desdouits M (1886) Application de la méthode rationelle aux études dynamométriques, appareils et procédés d’expériences, résultats obtenus dans l’étude de la résistance des trains. Annales des Ponts et Chaussées, 1 Desdouits M (1886) Application de la méthode rationelle aux études dynamométriques, appareils et procédés d’expériences, résultats obtenus dans l’étude de la résistance des trains. Annales des Ponts et Chaussées, 1
19.
Zurück zum Zitat Nipher FE (1902) Distribution des pressions sur une plaque exposée au vent. Washington, D.C. Nipher FE (1902) Distribution des pressions sur une plaque exposée au vent. Washington, D.C.
20.
Zurück zum Zitat von Karman T (1954) Aerodynamics. Cornell University Press, IthacaMATH von Karman T (1954) Aerodynamics. Cornell University Press, IthacaMATH
21.
Zurück zum Zitat Soreau R (1902) Navigation aérienne. Bulletin de la Société des Ingénieurs civils, October Soreau R (1902) Navigation aérienne. Bulletin de la Société des Ingénieurs civils, October
22.
Zurück zum Zitat Duchemin NV (1842) Recherches experimentales sur les lois de la resistance des fluides. Memorial de l’Artillerie 5:65–379 Duchemin NV (1842) Recherches experimentales sur les lois de la resistance des fluides. Memorial de l’Artillerie 5:65–379
23.
Zurück zum Zitat Cottier JGC (1907) A summary of the history of the resistance of elastic fluids. Mon Weather Rev 35:353–356CrossRef Cottier JGC (1907) A summary of the history of the resistance of elastic fluids. Mon Weather Rev 35:353–356CrossRef
24.
Zurück zum Zitat Gaudard J (1882) The resistance of viaducts to sudden gusts of wind. In: Minutes of the proceedings, The Institution of Civil Engineers, vol 69, Paper 1804, pp 120–137 Gaudard J (1882) The resistance of viaducts to sudden gusts of wind. In: Minutes of the proceedings, The Institution of Civil Engineers, vol 69, Paper 1804, pp 120–137
25.
Zurück zum Zitat Dines WH (1890) On the variation of the pressure caused by the wind blowing across the mouth of a tube. Q J R Meteor Soc 16:208–213CrossRef Dines WH (1890) On the variation of the pressure caused by the wind blowing across the mouth of a tube. Q J R Meteor Soc 16:208–213CrossRef
26.
Zurück zum Zitat Franck A (1906) Recherches pour établir la relation entre la résistance de l’air et la forme des corps. Zeitschrift des Vereines Deutscher Ingenieure, L. Franck A (1906) Recherches pour établir la relation entre la résistance de l’air et la forme des corps. Zeitschrift des Vereines Deutscher Ingenieure, L.
27.
Zurück zum Zitat von Lössl F (1904) Taschenbuch fur flugtechniker, Berlin von Lössl F (1904) Taschenbuch fur flugtechniker, Berlin
28.
Zurück zum Zitat Fidler TC (1887) A practical treatise on bridge construction. Charles Griffin, London Fidler TC (1887) A practical treatise on bridge construction. Charles Griffin, London
29.
Zurück zum Zitat Stanton TE (1907–1908) Experiments on wind-pressure. Proc Inst Civil Eng 171:175–214 Stanton TE (1907–1908) Experiments on wind-pressure. Proc Inst Civil Eng 171:175–214
30.
Zurück zum Zitat Rae WH, Pope A (1984) Low-speed wind tunnel testing. Wiley, New York Rae WH, Pope A (1984) Low-speed wind tunnel testing. Wiley, New York
31.
Zurück zum Zitat Stanton TE (1925) Report on the measurement of the pressure of the wind on structures. Proc Inst Civil Eng 219:125–158 Stanton TE (1925) Report on the measurement of the pressure of the wind on structures. Proc Inst Civil Eng 219:125–158
32.
Zurück zum Zitat Davenport AG (1977) Wind engineering—ancient and modern—the relationship of wind engineering research to design. In: Proceedings of 6th Canadian congress of applied mechanics, Vancouver, pp. 487–502 Davenport AG (1977) Wind engineering—ancient and modern—the relationship of wind engineering research to design. In: Proceedings of 6th Canadian congress of applied mechanics, Vancouver, pp. 487–502
33.
Zurück zum Zitat Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied Science Publishers, London Aynsley RM, Melbourne W, Vickery BJ (1977) Architectural aerodynamics. Applied Science Publishers, London
34.
Zurück zum Zitat Chanute O (1894) Progress in the flying machines. Am Eng Railroad J 68:34–37 Chanute O (1894) Progress in the flying machines. Am Eng Railroad J 68:34–37
35.
Zurück zum Zitat Phillips HF (1885) Experiments with currents of air. Engineering 40:160–161 Phillips HF (1885) Experiments with currents of air. Engineering 40:160–161
36.
Zurück zum Zitat Cermak JE (1975) Applications of fluid mechanics to wind engineering—a freeman scholar lecture. J Fluid Eng T ASME 97:9–38CrossRef Cermak JE (1975) Applications of fluid mechanics to wind engineering—a freeman scholar lecture. J Fluid Eng T ASME 97:9–38CrossRef
37.
Zurück zum Zitat Cermak JE (1981) Wind tunnel design for physical modeling of atmospheric boundary layers. J Eng Mech Div ASCE 107:623–642 Cermak JE (1981) Wind tunnel design for physical modeling of atmospheric boundary layers. J Eng Mech Div ASCE 107:623–642
38.
Zurück zum Zitat Kernot WC (1892) Wind pressure. J Aust Assoc Adv Sci 5:573–581 Kernot WC (1892) Wind pressure. J Aust Assoc Adv Sci 5:573–581
39.
Zurück zum Zitat Goin K (1971, February) The history, evolution and use of wind tunnels. AIAA Student J 3–13 Goin K (1971, February) The history, evolution and use of wind tunnels. AIAA Student J 3–13
40.
Zurück zum Zitat Jensen M (1967) Some lessons learned in building aerodynamics research. In: Proceedings of international research seminar on wind effects on buildings and structures, vol 1, Ottawa, Canada, pp 1–18 Jensen M (1967) Some lessons learned in building aerodynamics research. In: Proceedings of international research seminar on wind effects on buildings and structures, vol 1, Ottawa, Canada, pp 1–18
41.
Zurück zum Zitat Larose GL, Franck N (1995) Early wind engineering experiments in Denmark. In: Proceedings of 9th international conference on wind engineering, New Delhi, India, vol 4, pp 2212–2223 Larose GL, Franck N (1995) Early wind engineering experiments in Denmark. In: Proceedings of 9th international conference on wind engineering, New Delhi, India, vol 4, pp 2212–2223
42.
Zurück zum Zitat Davenport AG (1975) Perspectives on the full-scale measurement of wind effects. J Ind Aerod 1:23–54CrossRef Davenport AG (1975) Perspectives on the full-scale measurement of wind effects. J Ind Aerod 1:23–54CrossRef
43.
Zurück zum Zitat Irminger JOV (1893–1894) Experiments on wind pressures. Proc Inst Civil Eng Lond 118:468–472 Irminger JOV (1893–1894) Experiments on wind pressures. Proc Inst Civil Eng Lond 118:468–472
44.
Zurück zum Zitat Maxim H (1908) Artificial and natural flight. Macmillan, New York Maxim H (1908) Artificial and natural flight. Macmillan, New York
45.
Zurück zum Zitat Crouch TD, Jakab PL (2003) The Wright Brothers and the invention of the aerial age. Smithsonian National Air and Space Museum, National Geographic, Washington, D.C. Crouch TD, Jakab PL (2003) The Wright Brothers and the invention of the aerial age. Smithsonian National Air and Space Museum, National Geographic, Washington, D.C.
46.
Zurück zum Zitat Stanton TE (1903–1904) On the resistance of plane surfaces in a uniform current of air. Proc Inst Civil Eng 156:78–126 Stanton TE (1903–1904) On the resistance of plane surfaces in a uniform current of air. Proc Inst Civil Eng 156:78–126
47.
Zurück zum Zitat Riabouchinsky D (1906–1909) Bulletin de L’Institut Aerodynamique de Koutchino. Moscow, USSR, vols I, II, and III Riabouchinsky D (1906–1909) Bulletin de L’Institut Aerodynamique de Koutchino. Moscow, USSR, vols I, II, and III
48.
Zurück zum Zitat Eiffel G (1909) The resistance of the air and aviation: experiments conducted at the Champ-de-Mars Laboratory. Dunod et Pinat, ParisMATH Eiffel G (1909) The resistance of the air and aviation: experiments conducted at the Champ-de-Mars Laboratory. Dunod et Pinat, ParisMATH
49.
Zurück zum Zitat Eiffel G (1914) Nouvelles recherches sur la résistance de l’air et aviation faites au laboratoire d’Auteil. Dunod et Pinat, Paris Eiffel G (1914) Nouvelles recherches sur la résistance de l’air et aviation faites au laboratoire d’Auteil. Dunod et Pinat, Paris
50.
Zurück zum Zitat Loyrette H (1985) Gustave Eiffel. Rizzoli, New York Loyrette H (1985) Gustave Eiffel. Rizzoli, New York
51.
Zurück zum Zitat Prandtl L (1909) Die bedeutung von modellversuchen fur die luftschiffahrt und flugtechnik und die einrichtungen fur solche versuche in Gottingen. Z Ver Dtsch Ing 53:1711–1719 Prandtl L (1909) Die bedeutung von modellversuchen fur die luftschiffahrt und flugtechnik und die einrichtungen fur solche versuche in Gottingen. Z Ver Dtsch Ing 53:1711–1719
52.
Zurück zum Zitat Irminger JOV, Nøkkentved C (1930) Wind-pressure on buildings: experimental researches (1st series). Ingeniø rvidenskabelige Skrifter, A, 23, Copenhagen Irminger JOV, Nøkkentved C (1930) Wind-pressure on buildings: experimental researches (1st series). Ingeniø rvidenskabelige Skrifter, A, 23, Copenhagen
53.
Zurück zum Zitat Irminger JOV, Nøkkentved C (1936) Wind-pressure on buildings: experimental researches (2nd series). Ingeniø rvidenskabelige Skrifter, A, 42, Copenhagen Irminger JOV, Nøkkentved C (1936) Wind-pressure on buildings: experimental researches (2nd series). Ingeniø rvidenskabelige Skrifter, A, 42, Copenhagen
54.
Zurück zum Zitat Nøkkentved C (1936) Variation of the wind-pressure distribution on sharp-edged bodies. Report 7, Structural Research Laboratory, Royal Technical College, Copenhagen, Denmark Nøkkentved C (1936) Variation of the wind-pressure distribution on sharp-edged bodies. Report 7, Structural Research Laboratory, Royal Technical College, Copenhagen, Denmark
55.
Zurück zum Zitat Flachsbart O (1932) Winddruck auf geschlossene und offene Gebäude. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchanstalt zu Göttingen, IV Lieferung. Verlag von R. Oldenbourg, Munich, pp 128–134 Flachsbart O (1932) Winddruck auf geschlossene und offene Gebäude. In: Prandtl L, Betz A (eds) Ergebnisse der Aerodynamischen Versuchanstalt zu Göttingen, IV Lieferung. Verlag von R. Oldenbourg, Munich, pp 128–134
56.
Zurück zum Zitat Bailey A (1933) Wind pressures on buildings. J Civil Eng. Selected Engineering Paper 189 Bailey A (1933) Wind pressures on buildings. J Civil Eng. Selected Engineering Paper 189
57.
Zurück zum Zitat Bailey A, Vincent NDG (1943) Wind-pressures on buildings including effects of adjacent buildings. J Inst Civil Eng 20:243–275CrossRef Bailey A, Vincent NDG (1943) Wind-pressures on buildings including effects of adjacent buildings. J Inst Civil Eng 20:243–275CrossRef
58.
Zurück zum Zitat Harris CL (1934) Influence of neighbouring structures on the wind pressures on tall buildings. U.S. Bureau of Standards, J Res 12:103–118CrossRef Harris CL (1934) Influence of neighbouring structures on the wind pressures on tall buildings. U.S. Bureau of Standards, J Res 12:103–118CrossRef
59.
Zurück zum Zitat Nøkkentved C, Flensborg CE (1938) Laevirkningsundersogelser og typebestemmelser af Laehegn. Hedeselskabets Tidsskrift Nøkkentved C, Flensborg CE (1938) Laevirkningsundersogelser og typebestemmelser af Laehegn. Hedeselskabets Tidsskrift
60.
Zurück zum Zitat Nøkkentved C, Flensborg CE (1940) Fortsatte laevirkningsundersogelser. Hedeselskabets Tidsskrift Nøkkentved C, Flensborg CE (1940) Fortsatte laevirkningsundersogelser. Hedeselskabets Tidsskrift
61.
Zurück zum Zitat Jensen M (1954) Shelter effects: investigations into the aerodynamics of shelter and its effects on climate and crops. The Danish Technical Press, Copenhagen Jensen M (1954) Shelter effects: investigations into the aerodynamics of shelter and its effects on climate and crops. The Danish Technical Press, Copenhagen
62.
Zurück zum Zitat Davenport AG (1992) Martin Jensen: an appreciation. J Wind Eng Ind Aerod 41–44:15–22CrossRef Davenport AG (1992) Martin Jensen: an appreciation. J Wind Eng Ind Aerod 41–44:15–22CrossRef
63.
Zurück zum Zitat Jensen M, Franck N (1963) Model-scale tests in turbulent wind. Part I: phenomena dependent on the wind speed. The Danish Maritime Press, Copenhagen Jensen M, Franck N (1963) Model-scale tests in turbulent wind. Part I: phenomena dependent on the wind speed. The Danish Maritime Press, Copenhagen
64.
Zurück zum Zitat Jensen M, Franck N (1965) Model-scale tests in turbulent wind. Part II: phenomena dependent on the velocity pressure. The Danish Maritime Press, Copenhagen Jensen M, Franck N (1965) Model-scale tests in turbulent wind. Part II: phenomena dependent on the velocity pressure. The Danish Maritime Press, Copenhagen
65.
Zurück zum Zitat Jensen M (1958) The model-law for phenomena in natural wind. Ingenioren Int Ed 2:121–158 Jensen M (1958) The model-law for phenomena in natural wind. Ingenioren Int Ed 2:121–158
66.
Zurück zum Zitat Jensen M (1959) Aerodynamik i den naturlige Vind. Danish Technical Press, Copenhagen Jensen M (1959) Aerodynamik i den naturlige Vind. Danish Technical Press, Copenhagen
67.
Zurück zum Zitat Weis-Fogh T, Jensen M (1956) Biology and physics of locust flight. I. Basic principles in insect flight. A critical review. Proc Trans R Soc Lond Ser B 239:415–458CrossRef Weis-Fogh T, Jensen M (1956) Biology and physics of locust flight. I. Basic principles in insect flight. A critical review. Proc Trans R Soc Lond Ser B 239:415–458CrossRef
68.
Zurück zum Zitat Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Proc Trans R Soc Lond Ser B 239:511–552CrossRef Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Proc Trans R Soc Lond Ser B 239:511–552CrossRef
69.
Zurück zum Zitat Jensen M, Weis-Fogh T (1962) Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Proc Trans R Soc Lond Ser B 245:137–169CrossRef Jensen M, Weis-Fogh T (1962) Biology and physics of locust flight. V. Strength and elasticity of locust cuticle. Proc Trans R Soc Lond Ser B 245:137–169CrossRef
70.
Zurück zum Zitat Nurmen fur die Belastungsannahmen, die Inbetriebnahme und die Uberwachung der Bauten (1956) Schweizerischer Ingenieur-und-Architekten-Verein, 160 Nurmen fur die Belastungsannahmen, die Inbetriebnahme und die Uberwachung der Bauten (1956) Schweizerischer Ingenieur-und-Architekten-Verein, 160
71.
Zurück zum Zitat Owen PR, Zienkiewicz HK (1957) The production of uniform shear flow in a wind tunnel. J Fluid Mech 2:521–531MATHCrossRef Owen PR, Zienkiewicz HK (1957) The production of uniform shear flow in a wind tunnel. J Fluid Mech 2:521–531MATHCrossRef
73.
Zurück zum Zitat Cermak JE (1958) Wind tunnel for the study of turbulence in the atmospheric surface layer. Technical report CER58-JEC42. Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado Cermak JE (1958) Wind tunnel for the study of turbulence in the atmospheric surface layer. Technical report CER58-JEC42. Fluid Dynamics and Diffusion Laboratory, Colorado State University, Fort Collins, Colorado
74.
Zurück zum Zitat Plate EJ, Cermak JE (1963) Micromeleorological wind-tunnel facility. Technical report CER63EJP-JEC9. Fluid Dynamics and Diffusion Laboratory. Colorado State University, Fort Collins Plate EJ, Cermak JE (1963) Micromeleorological wind-tunnel facility. Technical report CER63EJP-JEC9. Fluid Dynamics and Diffusion Laboratory. Colorado State University, Fort Collins
75.
Zurück zum Zitat Hansen JR (ed) (2003) The wind and beyond: A documentary journey into the history of aerodynamics in America. Volume 1: The ascent of the airplane. The NASA History Series, Washington, D.C. Hansen JR (ed) (2003) The wind and beyond: A documentary journey into the history of aerodynamics in America. Volume 1: The ascent of the airplane. The NASA History Series, Washington, D.C.
76.
Zurück zum Zitat Lloyd A, Thomas N (1978) Kytes and kite flying. Hamly, London Lloyd A, Thomas N (1978) Kytes and kite flying. Hamly, London
77.
Zurück zum Zitat Licheri S (1997) Storia del volo e delle operazioni aeree e spaziali da Icaro ai nostri giorni. Aeronautica Militare, Ufficio Storico, Rome Licheri S (1997) Storia del volo e delle operazioni aeree e spaziali da Icaro ai nostri giorni. Aeronautica Militare, Ufficio Storico, Rome
78.
Zurück zum Zitat Lilienthal O (1894) The problem of flying. Annual Report of the Board of Regents of the Smithsonian Institution, Washington, D.C., July, pp 189–194 Lilienthal O (1894) The problem of flying. Annual Report of the Board of Regents of the Smithsonian Institution, Washington, D.C., July, pp 189–194
79.
Zurück zum Zitat Lilienthal O (1894) Practical experiments in soaring. Annual Report of the Board of Regents of the Smithsonian Institution, Washington, D.C., July, pp 195–199 Lilienthal O (1894) Practical experiments in soaring. Annual Report of the Board of Regents of the Smithsonian Institution, Washington, D.C., July, pp 195–199
80.
Zurück zum Zitat Lilienthal O (1897) The best shapes for wings. The Aeronautical Annual, Clarke, Boston, pp 35–37 Lilienthal O (1897) The best shapes for wings. The Aeronautical Annual, Clarke, Boston, pp 35–37
81.
Zurück zum Zitat Shevell RS (1983) Fundamental of flight. Prentice Hall, Englewood Cliffs, NJ Shevell RS (1983) Fundamental of flight. Prentice Hall, Englewood Cliffs, NJ
82.
Zurück zum Zitat Brewer G (1913) The collapse of monoplane wings. Flight, January Brewer G (1913) The collapse of monoplane wings. Flight, January
83.
Zurück zum Zitat Rayleigh Lord (1878) On the irregular flight of a tennis-ball. Messenger Math 7:14–16 Rayleigh Lord (1878) On the irregular flight of a tennis-ball. Messenger Math 7:14–16
84.
Zurück zum Zitat Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Angew Math 55:25–55MathSciNetCrossRef Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Angew Math 55:25–55MathSciNetCrossRef
85.
Zurück zum Zitat Joukowski NY (1907) Obshchestvo liubitelei estestvoznaniia, antropologii i etnografi. Izvjestiia, Mosca, 112 (Trans Phys Sect 13:12–25) Joukowski NY (1907) Obshchestvo liubitelei estestvoznaniia, antropologii i etnografi. Izvjestiia, Mosca, 112 (Trans Phys Sect 13:12–25)
86.
Zurück zum Zitat Joukowski NY (1912) De la chute dans l’air de corps légers de forme allongée, animés d’un mouvement rotatoire. Bull l’ Inst Aérodynamique Koutchino 1:51–65 Joukowski NY (1912) De la chute dans l’air de corps légers de forme allongée, animés d’un mouvement rotatoire. Bull l’ Inst Aérodynamique Koutchino 1:51–65
87.
Zurück zum Zitat Kutta MW (1902) Auftriebskräfte in strömenden Flüssigkeiten. Illustrierte Aeronautische Mitteilungen 6:133–135 Kutta MW (1902) Auftriebskräfte in strömenden Flüssigkeiten. Illustrierte Aeronautische Mitteilungen 6:133–135
88.
Zurück zum Zitat Kutta MW (1910) Über eine mit den Grundlagen des Flugproblems in Beziehung stehende zweidimensionale Stromung. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, pp 1–58MATH Kutta MW (1910) Über eine mit den Grundlagen des Flugproblems in Beziehung stehende zweidimensionale Stromung. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, pp 1–58MATH
89.
Zurück zum Zitat Kutta MW (1911) Über ebene Zirkulationsströmungen nebst flugtechnischen Anwendungen. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, pp 65–125MATH Kutta MW (1911) Über ebene Zirkulationsströmungen nebst flugtechnischen Anwendungen. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-physikalische Klasse, pp 65–125MATH
90.
Zurück zum Zitat Rouse H, Ince S (1954–1956) History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of Iowa, Iowa City Rouse H, Ince S (1954–1956) History of hydraulics. Series of Supplements to La Houille Blanche. Iowa Institute of Hydraulic Research, State University of Iowa, Iowa City
91.
92.
Zurück zum Zitat Lanchester FW (1908) Aerodonetics. Constable, London Lanchester FW (1908) Aerodonetics. Constable, London
93.
Zurück zum Zitat Prandtl L (1913) Flüssigkeitsbewegung. In: Handworterbuch der Naturwissenschaften. Verlag von Gustav Fischer, Jena Prandtl L (1913) Flüssigkeitsbewegung. In: Handworterbuch der Naturwissenschaften. Verlag von Gustav Fischer, Jena
94.
Zurück zum Zitat Prandtl L (1918) Tragflügeltheorie. I. Göttinger Nachrichten, Mathematischphysikalische Klasse, pp 451–477MATH Prandtl L (1918) Tragflügeltheorie. I. Göttinger Nachrichten, Mathematischphysikalische Klasse, pp 451–477MATH
95.
Zurück zum Zitat Prandtl L (1919) Tragflügeltheorie. II. Göttinger Nachrichten, Mathematischphysikalische Klasse, pp 107–137 Prandtl L (1919) Tragflügeltheorie. II. Göttinger Nachrichten, Mathematischphysikalische Klasse, pp 107–137
96.
Zurück zum Zitat Eckert M (2005) Strategic internationalism and the transfer of technological knowledge: The United States, Germany, and aerodynamics after World War I. Technol Cult 46:104–131CrossRef Eckert M (2005) Strategic internationalism and the transfer of technological knowledge: The United States, Germany, and aerodynamics after World War I. Technol Cult 46:104–131CrossRef
97.
Zurück zum Zitat Prandtl L (1920) Theory of lifting surfaces. Part I and Part II. NACA-TN-9, 10 Prandtl L (1920) Theory of lifting surfaces. Part I and Part II. NACA-TN-9, 10
98.
Zurück zum Zitat Prandtl L (1921) Applications of modern hydrodynamics to aeronautics. NACA report 116 Prandtl L (1921) Applications of modern hydrodynamics to aeronautics. NACA report 116
99.
Zurück zum Zitat Fage A, Nixon HL (1923–1924) The prediction on the Prandtl theory of the lift and drag for infinite span from measurements on aerofoils of infinite span. Aeronautical Research Committee R. & M. 903 Fage A, Nixon HL (1923–1924) The prediction on the Prandtl theory of the lift and drag for infinite span from measurements on aerofoils of infinite span. Aeronautical Research Committee R. & M. 903
100.
Zurück zum Zitat Bryant LW, Williams DK (1926) An investigation of the flow of air around an aerofoil of infinite span. Philos Trans R Soc Lond Ser A 225:199–245CrossRef Bryant LW, Williams DK (1926) An investigation of the flow of air around an aerofoil of infinite span. Philos Trans R Soc Lond Ser A 225:199–245CrossRef
101.
Zurück zum Zitat Glauert H (1926) The elements of aerofoil and airscrew theory. Cambridge University Press, CambridgeMATH Glauert H (1926) The elements of aerofoil and airscrew theory. Cambridge University Press, CambridgeMATH
102.
Zurück zum Zitat Breguet LC (1922) Aerodynamic efficiency and the reduction of air transport costs. Aeronaut J 26:307–313 Breguet LC (1922) Aerodynamic efficiency and the reduction of air transport costs. Aeronaut J 26:307–313
103.
Zurück zum Zitat Jones BM (1929) The streamline airplane. Aeronaut J 33:358–385 Jones BM (1929) The streamline airplane. Aeronaut J 33:358–385
104.
Zurück zum Zitat Pankhurst RC, Holder DW (1952) Wind tunnel techniques. Pitman, London Pankhurst RC, Holder DW (1952) Wind tunnel techniques. Pitman, London
105.
Zurück zum Zitat Barlow BB, Rae WH, Pope A (1999) Low-speed wind tunnel testing. Wiley, New York Barlow BB, Rae WH, Pope A (1999) Low-speed wind tunnel testing. Wiley, New York
106.
Zurück zum Zitat Prandtl L (1920) Gottingen wind tunnel for testing aircraft models. NACA-TN-66 Prandtl L (1920) Gottingen wind tunnel for testing aircraft models. NACA-TN-66
107.
Zurück zum Zitat Ames JS (1926) A resume of the advances in theoretical aeronautics made by Max M. Munk. NACA-TN-213 Ames JS (1926) A resume of the advances in theoretical aeronautics made by Max M. Munk. NACA-TN-213
108.
Zurück zum Zitat Munk MM (1921) On a new type of wind tunnel. NACA-TN-60 Munk MM (1921) On a new type of wind tunnel. NACA-TN-60
109.
Zurück zum Zitat Jacobs EN, Ward KE, Pinkerton RM (1933) The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA report 460 Jacobs EN, Ward KE, Pinkerton RM (1933) The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel. NACA report 460
110.
Zurück zum Zitat Durand WF (ed) (1934–1936) Aerodynamic theory. Springer, Berlin Durand WF (ed) (1934–1936) Aerodynamic theory. Springer, Berlin
111.
Zurück zum Zitat Lanchester FW (1916) Torsional vibration of the tail of an aeroplane. Aeronautical Research Committee R. & M. 276, Part 1 Lanchester FW (1916) Torsional vibration of the tail of an aeroplane. Aeronautical Research Committee R. & M. 276, Part 1
112.
Zurück zum Zitat Bairstow L, Fage A (1916) Oscillations of the tail plane and body of an aeroplane in flight. Aeronautical Research Committee R. & M. 276, Part 2 Bairstow L, Fage A (1916) Oscillations of the tail plane and body of an aeroplane in flight. Aeronautical Research Committee R. & M. 276, Part 2
113.
Zurück zum Zitat Blasius H (1925) Über schwingungserscheinungen an einholmigen unterflügeln. Z Flugtech Motorluftschif 16:39–42 Blasius H (1925) Über schwingungserscheinungen an einholmigen unterflügeln. Z Flugtech Motorluftschif 16:39–42
114.
Zurück zum Zitat (1925) Accident to aeroplanes involving flutter of the wings. Report of the Accidents Investigation Sub-Committee, Report and Memoranda 1041, Aeronautical Research Council, Her Majesty’s Stationery Office, London (1925) Accident to aeroplanes involving flutter of the wings. Report of the Accidents Investigation Sub-Committee, Report and Memoranda 1041, Aeronautical Research Council, Her Majesty’s Stationery Office, London
115.
Zurück zum Zitat Relf EF, Lavender T (1918) The autorotation of stalled aerofoils and its relation to the spinning speed of aeroplanes. Aeronautical Research Committee R. & M. 549 Relf EF, Lavender T (1918) The autorotation of stalled aerofoils and its relation to the spinning speed of aeroplanes. Aeronautical Research Committee R. & M. 549
116.
Zurück zum Zitat Glauert H (1919) The rotation of an aerofoil about a fixed axis. Aeronautical Research Committee R. & M. 595 Glauert H (1919) The rotation of an aerofoil about a fixed axis. Aeronautical Research Committee R. & M. 595
117.
Zurück zum Zitat Glauert H (1919) The investigation of the spin of an aeroplane. Aeronautical Research Committee R. & M. 618 Glauert H (1919) The investigation of the spin of an aeroplane. Aeronautical Research Committee R. & M. 618
118.
Zurück zum Zitat Birnbaum W (1923) Die tragende wirbelfläche als hilfsmittel zur behandlung des ebenen problems der tragflügeltheorie. Z Angew Math Mech 3:290–297MATHCrossRef Birnbaum W (1923) Die tragende wirbelfläche als hilfsmittel zur behandlung des ebenen problems der tragflügeltheorie. Z Angew Math Mech 3:290–297MATHCrossRef
119.
Zurück zum Zitat Birnbaum W (1924) Das ebene problem des schlagenden flügels. Z Angew Math Mech 4:277–292MATHCrossRef Birnbaum W (1924) Das ebene problem des schlagenden flügels. Z Angew Math Mech 4:277–292MATHCrossRef
120.
Zurück zum Zitat Wagner H (1925) Uber die entstehung des dynamischer auftriebes von tragflügeln. Z Angew Math Mech 5:17–35MATHCrossRef Wagner H (1925) Uber die entstehung des dynamischer auftriebes von tragflügeln. Z Angew Math Mech 5:17–35MATHCrossRef
121.
Zurück zum Zitat Reissner H (1926) Neuere probleme aus der flugzeugstatik. Z Flugtechnik Motorluftschiffahrt 17:137–146 Reissner H (1926) Neuere probleme aus der flugzeugstatik. Z Flugtechnik Motorluftschiffahrt 17:137–146
122.
Zurück zum Zitat Glauert H (1929) The force and moment of an oscillating aerofoil. Aeronautical Research Committee R. & M. 1242 Glauert H (1929) The force and moment of an oscillating aerofoil. Aeronautical Research Committee R. & M. 1242
123.
Zurück zum Zitat Küssner HG (1929) Schwingungen von Flugzeugflügeln. Luftfahrt-Forsch. 4:41–62 Küssner HG (1929) Schwingungen von Flugzeugflügeln. Luftfahrt-Forsch. 4:41–62
124.
Zurück zum Zitat Frazer RA, Duncan WJ (1928) A brief survey of wing flutter with an abstract of design recommendations. Aeronautical Research Committee R. & M. 1177 Frazer RA, Duncan WJ (1928) A brief survey of wing flutter with an abstract of design recommendations. Aeronautical Research Committee R. & M. 1177
125.
Zurück zum Zitat Frazer RA, Duncan WJ (1931) The flutter of monoplanes, biplanes, and tail units. Aeronautical Research Committee R. & M. 1255 Frazer RA, Duncan WJ (1931) The flutter of monoplanes, biplanes, and tail units. Aeronautical Research Committee R. & M. 1255
126.
Zurück zum Zitat Cox HR (1932) A statistical method of investigating the relations between the elastic stiffness of aeroplane wings and wing-aileron flutter. Aeronautical Research Committee R. & M. 1505 Cox HR (1932) A statistical method of investigating the relations between the elastic stiffness of aeroplane wings and wing-aileron flutter. Aeronautical Research Committee R. & M. 1505
127.
Zurück zum Zitat Theodorsen Th (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA report 496 Theodorsen Th (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA report 496
128.
Zurück zum Zitat Scanlan RH, Tomko JJ (1971) Airfoil and bridge deck flutter derivatives. J Eng Mech ASCE 97:1717–1737 Scanlan RH, Tomko JJ (1971) Airfoil and bridge deck flutter derivatives. J Eng Mech ASCE 97:1717–1737
129.
Zurück zum Zitat Cicala P (1935) Le azioni aerodinamiche sui profile di ala oscillanti in presenza di corrente uniforme. Mem della Reale Accad delle Sci Torino Ser 2:73–98 Cicala P (1935) Le azioni aerodinamiche sui profile di ala oscillanti in presenza di corrente uniforme. Mem della Reale Accad delle Sci Torino Ser 2:73–98
130.
Zurück zum Zitat Küssner HG (1936) Zusammenfassender Bericht über den instationaren Auftrieb von Flügeln. Luftfahforschung 13:410–424MATH Küssner HG (1936) Zusammenfassender Bericht über den instationaren Auftrieb von Flügeln. Luftfahforschung 13:410–424MATH
131.
Zurück zum Zitat Kassner R, Fingado H (1936) Das ebene Problem der Flügelschwingung. Luftfahrtforschung 13:374–387. (The two-dimensional problem of wing vibration. J R Aeronaut Soc 41:921–944, 1937.) Kassner R, Fingado H (1936) Das ebene Problem der Flügelschwingung. Luftfahrtforschung 13:374–387. (The two-dimensional problem of wing vibration. J R Aeronaut Soc 41:921–944, 1937.)
132.
Zurück zum Zitat Garrick IE (1936) Propulsion of a flapping and oscillating airfoil. NACA report 567 Garrick IE (1936) Propulsion of a flapping and oscillating airfoil. NACA report 567
133.
Zurück zum Zitat von Karman T, Sears WR (1938) Airfoil theory for non-uniform motion. J Aeronaut Sci 5:379–390MATHCrossRef von Karman T, Sears WR (1938) Airfoil theory for non-uniform motion. J Aeronaut Sci 5:379–390MATHCrossRef
134.
Zurück zum Zitat Garrick IE (1938) On some reciprocal relations in the theory of nonstationary flows. NACA report 629 Garrick IE (1938) On some reciprocal relations in the theory of nonstationary flows. NACA report 629
135.
Zurück zum Zitat Theodorsen T, Garrick IE (1940) Mechanism of flutter. A theoretical and experimental investigation of the flutter problem. NACA report 685 Theodorsen T, Garrick IE (1940) Mechanism of flutter. A theoretical and experimental investigation of the flutter problem. NACA report 685
136.
Zurück zum Zitat Aerodynamics Staff of the N.P.L. (1931) Technical report by the Accident’s Investigation Subcommittee on the accident to the aeroplane G-AAZK at Meopham, Kent (England), on 21 July 1930. Aeronautical Research Committee R. & M. 1360 Aerodynamics Staff of the N.P.L. (1931) Technical report by the Accident’s Investigation Subcommittee on the accident to the aeroplane G-AAZK at Meopham, Kent (England), on 21 July 1930. Aeronautical Research Committee R. & M. 1360
137.
Zurück zum Zitat Blenk H, Hertel H, Thalau K (1932) The german investigation of the accident at Meopham, Kent (England). NACA-TM-669 Blenk H, Hertel H, Thalau K (1932) The german investigation of the accident at Meopham, Kent (England). NACA-TM-669
138.
Zurück zum Zitat Duncan WJ, Ellis DL, Scruton C (1932) First report on the general investigation of tail buffeting. Aeronautical Research Committee R. & M. 1457 Duncan WJ, Ellis DL, Scruton C (1932) First report on the general investigation of tail buffeting. Aeronautical Research Committee R. & M. 1457
139.
Zurück zum Zitat Duncan WJ, Ellis DL, Scruton C (1933) Second report on the general investigation of tail buffeting. Aeronautical Research Committee R. & M. 1541 Duncan WJ, Ellis DL, Scruton C (1933) Second report on the general investigation of tail buffeting. Aeronautical Research Committee R. & M. 1541
140.
141.
Zurück zum Zitat Jones RT (1940) The unsteady lift of a wing of finite aspect ratio. NACA report 681 Jones RT (1940) The unsteady lift of a wing of finite aspect ratio. NACA report 681
142.
Zurück zum Zitat Jones WP (1945) Aerodynamic forces on wings in simple harmonic motion. Aeronautical Research Council R. & M. 2026 Jones WP (1945) Aerodynamic forces on wings in simple harmonic motion. Aeronautical Research Council R. & M. 2026
143.
Zurück zum Zitat Chen X, Kareem A (2002) Advances in modeling of aerodynamic forces on bridge decks. J Eng Mech ASCE 128:1193–1205CrossRef Chen X, Kareem A (2002) Advances in modeling of aerodynamic forces on bridge decks. J Eng Mech ASCE 128:1193–1205CrossRef
144.
Zurück zum Zitat Kryloff N, Bogoliuboff N (1943) Introduction to non-linear mechanics (trans: Russian by Lefschetz S). Princeton University Press Kryloff N, Bogoliuboff N (1943) Introduction to non-linear mechanics (trans: Russian by Lefschetz S). Princeton University Press
145.
Zurück zum Zitat Minorsky N (1947) Introduction to non-linear mechanics. J.W. Edwards, Ann Arbor, MIMATH Minorsky N (1947) Introduction to non-linear mechanics. J.W. Edwards, Ann Arbor, MIMATH
146.
Zurück zum Zitat Collar AR (1946) The expanding domain of aeroelasticity. J R Aeronaut Soc L 613–636 Collar AR (1946) The expanding domain of aeroelasticity. J R Aeronaut Soc L 613–636
147.
Zurück zum Zitat Scanlan RH, Rosenbaum R (1951) Introduction to the study of aircraft vibration and flutter. Macmillan, New YorkMATH Scanlan RH, Rosenbaum R (1951) Introduction to the study of aircraft vibration and flutter. Macmillan, New YorkMATH
148.
Zurück zum Zitat Fung YC (1955) An introduction to the theory of aeroelaticity. Wiley, New York Fung YC (1955) An introduction to the theory of aeroelaticity. Wiley, New York
149.
Zurück zum Zitat Bisplinghoff RL, Ashley H, Halfman RL (1955) Aeroelasticity. Addison-Wesley, Cambridge, MAMATH Bisplinghoff RL, Ashley H, Halfman RL (1955) Aeroelasticity. Addison-Wesley, Cambridge, MAMATH
150.
Zurück zum Zitat (1959). Manual on aeroelasticity. NATO Advisory Group for Aeronautical Research and Development (1959). Manual on aeroelasticity. NATO Advisory Group for Aeronautical Research and Development
151.
Zurück zum Zitat Bisplinghoff RL, Ashley H (1962) Principles of aeroelasticity. Wiley, New YorkMATH Bisplinghoff RL, Ashley H (1962) Principles of aeroelasticity. Wiley, New YorkMATH
152.
Zurück zum Zitat Liepmann HW (1952) On the application of statistical concepts to the buffeting problem. J Aeronaut Sci 19:793–800MATHCrossRef Liepmann HW (1952) On the application of statistical concepts to the buffeting problem. J Aeronaut Sci 19:793–800MATHCrossRef
153.
Zurück zum Zitat Rayleigh Lord (1945) Theory of sound. Dover Publications, New YorkMATH Rayleigh Lord (1945) Theory of sound. Dover Publications, New YorkMATH
155.
156.
158.
Zurück zum Zitat Liepmann HW (1955) Extension of the statistical approach to buffeting and gust response of wings of finite span. J Aeronat Sci 22:197–200MATHCrossRef Liepmann HW (1955) Extension of the statistical approach to buffeting and gust response of wings of finite span. J Aeronat Sci 22:197–200MATHCrossRef
159.
Zurück zum Zitat Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, UKMATH Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, UKMATH
160.
Zurück zum Zitat Cramer HE (1959) Measurements of turbulence structure near the ground within the frequency range from 0.5 to 0.01 cycles sec. In: Advances in geophysics, 6, Atmospheric diffusion and air pollution. Academic Press, New York and London, pp 75–96 Cramer HE (1959) Measurements of turbulence structure near the ground within the frequency range from 0.5 to 0.01 cycles sec. In: Advances in geophysics, 6, Atmospheric diffusion and air pollution. Academic Press, New York and London, pp 75–96
161.
Zurück zum Zitat Cramer HE (1960) Use of power spectra and scales of turbulence in estimating wind loads. Meteor Mon 4:12–18 Cramer HE (1960) Use of power spectra and scales of turbulence in estimating wind loads. Meteor Mon 4:12–18
162.
Zurück zum Zitat Press H, Meadows MT, Hadlock I (1956) A reevaluation of data on atmospheric turbulence and airplane gust loads for application in spectral calculations. NACA report 1272 Press H, Meadows MT, Hadlock I (1956) A reevaluation of data on atmospheric turbulence and airplane gust loads for application in spectral calculations. NACA report 1272
163.
Zurück zum Zitat Press H, Houbolt JC (1955) Some applications of generalized harmonic analysis to gust loads on airplanes. J Aeronaut Sci 22:17–26MATHCrossRef Press H, Houbolt JC (1955) Some applications of generalized harmonic analysis to gust loads on airplanes. J Aeronaut Sci 22:17–26MATHCrossRef
164.
Zurück zum Zitat Thorson KR, Bohne QR (1959) Application of power spectral methods in airplane and missile design. Institute Aerospace Science, report 59-42 Thorson KR, Bohne QR (1959) Application of power spectral methods in airplane and missile design. Institute Aerospace Science, report 59-42
167.
Zurück zum Zitat Davenport AG (1961) The application of statistical concepts to the wind loading of structures. Proc Inst Civil Eng 19:449–472 Davenport AG (1961) The application of statistical concepts to the wind loading of structures. Proc Inst Civil Eng 19:449–472
168.
Zurück zum Zitat Sciarrelli C (1970) Lo yacht: origine ed evoluzione del veliero da diporto. Mursia, Milan Sciarrelli C (1970) Lo yacht: origine ed evoluzione del veliero da diporto. Mursia, Milan
169.
Zurück zum Zitat Giorgetti F (2003) Storia ed evoluzione degli yacht da regata. White Star, Vercelli, Italy Giorgetti F (2003) Storia ed evoluzione degli yacht da regata. White Star, Vercelli, Italy
170.
Zurück zum Zitat Munk MM (1923) The minimum induced drag of aerofoils. NACA report 121 Munk MM (1923) The minimum induced drag of aerofoils. NACA report 121
171.
Zurück zum Zitat Warner EP, Shatswell O (1925) The aerodynamics of yacht sails. Trans Soc Naval Architects Mar Eng 33:207–232 Warner EP, Shatswell O (1925) The aerodynamics of yacht sails. Trans Soc Naval Architects Mar Eng 33:207–232
172.
Zurück zum Zitat Curry M (1948) Yacht racing: the aerodynamics of sails and racing tactics, 5th edn. Charles Scribner’s Sons, New York Curry M (1948) Yacht racing: the aerodynamics of sails and racing tactics, 5th edn. Charles Scribner’s Sons, New York
173.
Zurück zum Zitat DeBord F Jr, Kirkman K, Savitsky D (2004) The evolving role of the to wing tank for grand prix sailing yacht design. In: Proceedings of 27th American towing tank conference, Newfoundland and Labrador, Canada DeBord F Jr, Kirkman K, Savitsky D (2004) The evolving role of the to wing tank for grand prix sailing yacht design. In: Proceedings of 27th American towing tank conference, Newfoundland and Labrador, Canada
174.
Zurück zum Zitat Taylor DW (1933) Speed and power of ships. Ransdell Taylor DW (1933) Speed and power of ships. Ransdell
175.
Zurück zum Zitat Davidson KSM (1936) Some experimental studies of the sailing yacht. Trans Soc Naval Architects Mar Eng 44:288–334 Davidson KSM (1936) Some experimental studies of the sailing yacht. Trans Soc Naval Architects Mar Eng 44:288–334
176.
Zurück zum Zitat Herreshoff HC (1964) Hydrodynamics and aerodynamics of the sailing yacht. Trans Soc Naval Architects Mar Eng 72:445–492 Herreshoff HC (1964) Hydrodynamics and aerodynamics of the sailing yacht. Trans Soc Naval Architects Mar Eng 72:445–492
177.
Zurück zum Zitat Melaragno MG (1982) Wind in architectural and environmental design. Van Nostrand Reinhold, New York Melaragno MG (1982) Wind in architectural and environmental design. Van Nostrand Reinhold, New York
178.
Zurück zum Zitat Hucho WH (ed) (1998) Aerodynamics of road vehicles. Society of Automotive Engineers, Warrendale, PA Hucho WH (ed) (1998) Aerodynamics of road vehicles. Society of Automotive Engineers, Warrendale, PA
179.
Zurück zum Zitat Hucho WH, Sovran G (1993) Aerodynamics of road vehicles. Annu Rev Fluid Mech 25:485–537CrossRef Hucho WH, Sovran G (1993) Aerodynamics of road vehicles. Annu Rev Fluid Mech 25:485–537CrossRef
180.
Zurück zum Zitat Riedler A (1911) Wissenschaftliche automobilbewertung. Oldenburg, Berlin Riedler A (1911) Wissenschaftliche automobilbewertung. Oldenburg, Berlin
181.
Zurück zum Zitat Aston WG (1911) Body design and wind resistance. The Autocar 364–366 (August) Aston WG (1911) Body design and wind resistance. The Autocar 364–366 (August)
182.
Zurück zum Zitat Rumpler E (1924) Das Auto in Luftstrom. Z Flugtech Motorluftschiffahrt 15:22–25 Rumpler E (1924) Das Auto in Luftstrom. Z Flugtech Motorluftschiffahrt 15:22–25
183.
Zurück zum Zitat Jaray P (1922) Der stromlinienwagen - Eine neue form der automobilkarosserie. Der Motorwagen 17:333–336 Jaray P (1922) Der stromlinienwagen - Eine neue form der automobilkarosserie. Der Motorwagen 17:333–336
184.
Zurück zum Zitat Klemperer W (1922) Luftwiderstandsuntersuchungen an automodellen. Z Flugtech Motorluftschiffahrt 13:201–206 Klemperer W (1922) Luftwiderstandsuntersuchungen an automodellen. Z Flugtech Motorluftschiffahrt 13:201–206
185.
Zurück zum Zitat Mouboussin P (1933) Voitures aérodynamiques. L’Aéronautique 239–245 (November) Mouboussin P (1933) Voitures aérodynamiques. L’Aéronautique 239–245 (November)
186.
Zurück zum Zitat Koenig-Fachsenfeld R (1941) Luftwiderstandsmessungen an einem Modell des TatraWagens Typ 87. ATZ 44:286–287 Koenig-Fachsenfeld R (1941) Luftwiderstandsmessungen an einem Modell des TatraWagens Typ 87. ATZ 44:286–287
187.
Zurück zum Zitat Lange A (1937) Vergleichende Windkanalversuche an Fahrzeugmodellen. Berichte Deutscher Kraftfahrzeugforschung im Auftrag des RVM 31 Lange A (1937) Vergleichende Windkanalversuche an Fahrzeugmodellen. Berichte Deutscher Kraftfahrzeugforschung im Auftrag des RVM 31
188.
Zurück zum Zitat Schlör K (1938) Entwicklung und bau einer luftwiderstandsarmen karosserie auf einem 1,7-Ltr-Heckmotor-Mercedes-Benz-Fahrgestell. Deutsche Kraftfahrforschung, Zwischenbericht 48 Schlör K (1938) Entwicklung und bau einer luftwiderstandsarmen karosserie auf einem 1,7-Ltr-Heckmotor-Mercedes-Benz-Fahrgestell. Deutsche Kraftfahrforschung, Zwischenbericht 48
189.
Zurück zum Zitat Lay WE (1933) Is 50 miles per gallon possible with correct streamlining? SAE J 32:144–156, 177–186 Lay WE (1933) Is 50 miles per gallon possible with correct streamlining? SAE J 32:144–156, 177–186
190.
Zurück zum Zitat Kamm W, Schmid C, Riekert P, Huber L (1934) Einfluss der Autobahnen auf die Gestaltung der Kraftfahrzeugen. Automobiltech Z 37:341–354 Kamm W, Schmid C, Riekert P, Huber L (1934) Einfluss der Autobahnen auf die Gestaltung der Kraftfahrzeugen. Automobiltech Z 37:341–354
191.
Zurück zum Zitat Kamm W (1939) Der Weg zum wirtschaftlichen autobahn- und straentüchtigen Fahrzeug. Strae 6:104–109 Kamm W (1939) Der Weg zum wirtschaftlichen autobahn- und straentüchtigen Fahrzeug. Strae 6:104–109
192.
Zurück zum Zitat Koenig-Fachsenfeld RV, Ruehle D, Eckert A, Zeuner M (1936) Windkanalmessungen an Omnibusmodellen. Automobiltech Z 39:143–149 Koenig-Fachsenfeld RV, Ruehle D, Eckert A, Zeuner M (1936) Windkanalmessungen an Omnibusmodellen. Automobiltech Z 39:143–149
193.
Zurück zum Zitat Heald RH (1933) Aerodynamic characteristics of automobile models. US Department of Commerce, Bureau of Standards, RP 591, 285–291 Heald RH (1933) Aerodynamic characteristics of automobile models. US Department of Commerce, Bureau of Standards, RP 591, 285–291
194.
Zurück zum Zitat Kamm W (1933) Anforderungen an kraftwagen bei dauerfahrten. Z Ver Dtsch Ing 77:1129–1133 Kamm W (1933) Anforderungen an kraftwagen bei dauerfahrten. Z Ver Dtsch Ing 77:1129–1133
195.
Zurück zum Zitat Hansen M, Schlör K (1938) Aerodynamische modellmessungen an veschiedenen kraft-wagenformen und verhalten des wirklichen fahrzeugs bei seitenwind. Deutsche Kraftfahrt-forschung, Zwischenbericht 63 Hansen M, Schlör K (1938) Aerodynamische modellmessungen an veschiedenen kraft-wagenformen und verhalten des wirklichen fahrzeugs bei seitenwind. Deutsche Kraftfahrt-forschung, Zwischenbericht 63
196.
Zurück zum Zitat Fiedler F, Kamm W (1940) Steigerung der wirtschaftlichkeit des personenwagens. Z Ver Dtsch Ing 84:485–491 Fiedler F, Kamm W (1940) Steigerung der wirtschaftlichkeit des personenwagens. Z Ver Dtsch Ing 84:485–491
197.
Zurück zum Zitat Kieselbach RJF (1986) Streamlining vehicles 1945-1965. A historical review. J Wind Eng Ind Aerodyn 22:105–113CrossRef Kieselbach RJF (1986) Streamlining vehicles 1945-1965. A historical review. J Wind Eng Ind Aerodyn 22:105–113CrossRef
198.
Zurück zum Zitat Möller E (1951) Luftwiderstandsmessungen am VW-Lieferwagen. Automobiltechnische Zeitschrift 53:153–156 Möller E (1951) Luftwiderstandsmessungen am VW-Lieferwagen. Automobiltechnische Zeitschrift 53:153–156
199.
Zurück zum Zitat Sherwood AW (1953) Wind tunnel test of trailmobile trailers. University of Maryland, Wind Tunnel report 35 Sherwood AW (1953) Wind tunnel test of trailmobile trailers. University of Maryland, Wind Tunnel report 35
200.
Zurück zum Zitat Scholz N (1951) Windkanaluntersuchungen am NSU-Weltrekordmotorrad. Die Umschau 51:691–692 Scholz N (1951) Windkanaluntersuchungen am NSU-Weltrekordmotorrad. Die Umschau 51:691–692
201.
Zurück zum Zitat Scholz N (1953) Windkanaluntersuchungen an motorradmodellen. Z Ver Dtsch Ing 95:17 Scholz N (1953) Windkanaluntersuchungen an motorradmodellen. Z Ver Dtsch Ing 95:17
202.
Zurück zum Zitat Schlichting H (1953) Aerodynamische untersuchungen an kraftfahrzeugen. Kassel, Hochschultag Schlichting H (1953) Aerodynamische untersuchungen an kraftfahrzeugen. Kassel, Hochschultag
203.
Zurück zum Zitat Vilain LM (1967) L’évolution du matériel moteur et roulant des chemins defer de l’Etat. Vincent, Paris Vilain LM (1967) L’évolution du matériel moteur et roulant des chemins defer de l’Etat. Vincent, Paris
204.
Zurück zum Zitat Deharme E, Pulin A (1895) Chemins de fer, matériel roulant, résistance des trains, traction. Gauthier-Villards, Paris Deharme E, Pulin A (1895) Chemins de fer, matériel roulant, résistance des trains, traction. Gauthier-Villards, Paris
205.
Zurück zum Zitat Goss WFM (1891) An experimental locomotive. Railroad Eng J 65:549 Goss WFM (1891) An experimental locomotive. Railroad Eng J 65:549
206.
Zurück zum Zitat Goss WFM (1898) Atmospheric resistance to the motion of railway trains. The Engineer, 12 August, 164–166 Goss WFM (1898) Atmospheric resistance to the motion of railway trains. The Engineer, 12 August, 164–166
207.
Zurück zum Zitat Goss WFM (1907) Locomotive performance: the result of a series of researches conducted by the Engineering Laboratory of Purdue University. Wiley, New York Goss WFM (1907) Locomotive performance: the result of a series of researches conducted by the Engineering Laboratory of Purdue University. Wiley, New York
208.
Zurück zum Zitat Carus-Wilson CA (1907) The predetermination of train resistance. In: Minutes of proceedings, Institution of Civil Engineers, CXLVII, pp 227–265 Carus-Wilson CA (1907) The predetermination of train resistance. In: Minutes of proceedings, Institution of Civil Engineers, CXLVII, pp 227–265
209.
Zurück zum Zitat Riley CJ (2002) The encyclopedia of trains & locomotives. Metro Books, New York Riley CJ (2002) The encyclopedia of trains & locomotives. Metro Books, New York
210.
Zurück zum Zitat Schafer M, Welsh J (2002) Streamliners: history of a railroad icon. Motorbooks, St. Paul, MN Schafer M, Welsh J (2002) Streamliners: history of a railroad icon. Motorbooks, St. Paul, MN
211.
Zurück zum Zitat Davis WJ Jr (1926) The tractive resistance of electric locomotives and cars. Gen Electr Rev 29:685–707 Davis WJ Jr (1926) The tractive resistance of electric locomotives and cars. Gen Electr Rev 29:685–707
212.
Zurück zum Zitat Gawthorpe RG (1978) Aerodynamics of trains in the open air. Railway Eng Int 3:7–12 Gawthorpe RG (1978) Aerodynamics of trains in the open air. Railway Eng Int 3:7–12
213.
Zurück zum Zitat Giedion S (1948) Mechanization takes command. Norton, New York Giedion S (1948) Mechanization takes command. Norton, New York
214.
Zurück zum Zitat Tollmien W (1927) Air resistance and pressure zones around train in railway tunnels. Z Ver Dtsch Ing 71:199–203 Tollmien W (1927) Air resistance and pressure zones around train in railway tunnels. Z Ver Dtsch Ing 71:199–203
215.
Zurück zum Zitat Hara T, Okushi J (1962) Model tests on the aerodynamical phenomena of high speed trains entering a tunnel. Quarterly report of RTRI, vol 3, pp 6–10 Hara T, Okushi J (1962) Model tests on the aerodynamical phenomena of high speed trains entering a tunnel. Quarterly report of RTRI, vol 3, pp 6–10
216.
Zurück zum Zitat Fujii T, Maeda T, Ishida H, Imai T, Tanemoto K, Suzuki M (1999) Wind-induced accidents of train/vehicles and their measures in Japan. Quarterly report of RTRI, vol 40, pp 50–55CrossRef Fujii T, Maeda T, Ishida H, Imai T, Tanemoto K, Suzuki M (1999) Wind-induced accidents of train/vehicles and their measures in Japan. Quarterly report of RTRI, vol 40, pp 50–55CrossRef
217.
Zurück zum Zitat Gawthorpe RG (1994) Wind effects on ground transportation. J Wind Eng Ind Aerodyn 52:73–92CrossRef Gawthorpe RG (1994) Wind effects on ground transportation. J Wind Eng Ind Aerodyn 52:73–92CrossRef
Metadaten
Titel
Wind and Aerodynamics
verfasst von
Giovanni Solari
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-18815-3_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.