Skip to main content
Erschienen in: Fire Technology 5/2018

23.06.2018 | Review Paper

Wind and Fire Coupled Modelling—Part II: Good Practice Guidelines

verfasst von: Wojciech Węgrzyński, Tomasz Lipecki, Grzegorz Krajewski

Erschienen in: Fire Technology | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The requirement to model wind is inherently connected with the modelling of many fire-related phenomena. With its defining influence on fire behaviour, spread and smoke transport, the solution of a problem with and without wind exposure will lead to substantially different results. As wind and fire are phenomena that often require different scales of analysis and approaches to modelling, their coupling is not a trivial task. This paper is the second part of a two-paper review of the coupling between fire safety engineering and computational wind engineering (CWE). Part I contained a review of historical interactions between these disciplines, sorted into six distinct areas: flames, indoor flows, natural ventilators, tunnels, wildfires and urban smoke dispersion. This part of the review contains practical information related to wind modelling in fire analysis, based on various available CWE best practice guidelines. As the authors conclude, the most relevant of these are guidelines related to urban physics and natural ventilation; however, many more are discussed and presented, together with the results of other essential wind engineering experiments and computations. Introduction of wind as a boundary condition is explained in details, both based on wind statistics, or meso/micro scale coupled modelling. The guidelines for wind/fire coupled analyses are subdivided into recommendations for: building the digital domain, spatial and temporal discretisation, the consequences of the choice of a turbulent flow model, and the procedure for optimising CFD analysis of both wind and fire phenomena.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Franke J, Hirsch C, Jensen AG, Krus HW, Schatzmann M, Westbury PS, Miles SD, Wisse JA, Wright NG (2004) Recommendations on the use of CFD in wind engineering. In: van Beeck JPAJ (ed) Proceedings of the international conference on urban wind engineering and building aerodynamics. COST action C14, impact of wind and storm on city life built environment, pp 1–11 Franke J, Hirsch C, Jensen AG, Krus HW, Schatzmann M, Westbury PS, Miles SD, Wisse JA, Wright NG (2004) Recommendations on the use of CFD in wind engineering. In: van Beeck JPAJ (ed) Proceedings of the international conference on urban wind engineering and building aerodynamics. COST action C14, impact of wind and storm on city life built environment, pp 1–11
7.
Zurück zum Zitat Franke J, Hellsten A, Schlünzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. COST Office Brussels Franke J, Hellsten A, Schlünzen H, Carissimo B (2007) Best practice guideline for the CFD simulation of flows in the urban environment. COST Office Brussels
10.
Zurück zum Zitat Tominaga Y, Mochida A, Shirasawa T, Yoshie R, Kataoka H, Harimoto K, Nozu T (2004) Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex. J Asian Archit Build Eng 70:63–70. https://doi.org/10.3130/jaabe.3.63 Tominaga Y, Mochida A, Shirasawa T, Yoshie R, Kataoka H, Harimoto K, Nozu T (2004) Cross comparisons of CFD results of wind environment at pedestrian level around a high-rise building and within a building complex. J Asian Archit Build Eng 70:63–70. https://​doi.​org/​10.​3130/​jaabe.​3.​63
21.
Zurück zum Zitat Gerhardt H, Kramer C (1992) Effects of building geometry on roof wind loading. J Wind Eng Ind Aerodyn 41–44:1765–1773 Gerhardt H, Kramer C (1992) Effects of building geometry on roof wind loading. J Wind Eng Ind Aerodyn 41–44:1765–1773
22.
Zurück zum Zitat Lipecki T (2013) Pressure coefficient on flat roofs of rectangular buildings. In: 6th European and African conference on wind engineering. Robinson College, Cambridge, pp 1–8 Lipecki T (2013) Pressure coefficient on flat roofs of rectangular buildings. In: 6th European and African conference on wind engineering. Robinson College, Cambridge, pp 1–8
24.
Zurück zum Zitat Kareem A, Lu PC (1992) Pressure fluctuations on flat roofs with parapets. J Wind Eng Ind Aerodyn 41–44:1775–1786 Kareem A, Lu PC (1992) Pressure fluctuations on flat roofs with parapets. J Wind Eng Ind Aerodyn 41–44:1775–1786
32.
Zurück zum Zitat Tieleman HW, Reinhold TA, Hajj MR (2001) Detailed simulation of pressures in separated/reattached flows. J Wind Eng Ind Aerodyn 89:1657–1670 Tieleman HW, Reinhold TA, Hajj MR (2001) Detailed simulation of pressures in separated/reattached flows. J Wind Eng Ind Aerodyn 89:1657–1670
43.
Zurück zum Zitat Easom G (2000) Improved turbulence models for computational wind engineering. Ph.D. Thesis, The University of Nottingham Easom G (2000) Improved turbulence models for computational wind engineering. Ph.D. Thesis, The University of Nottingham
46.
Zurück zum Zitat King MF, Gough HL, Halios C, Barlow JF, Robertson A, Hoxey R, Noakes CJ (2017) Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD. J Wind Eng Ind Aerodyn 169:265–279. https://doi.org/10.1016/j.jweia.2017.07.020 King MF, Gough HL, Halios C, Barlow JF, Robertson A, Hoxey R, Noakes CJ (2017) Investigating the influence of neighbouring structures on natural ventilation potential of a full-scale cubical building using time-dependent CFD. J Wind Eng Ind Aerodyn 169:265–279. https://​doi.​org/​10.​1016/​j.​jweia.​2017.​07.​020
48.
Zurück zum Zitat Melbourne WH (1980) Comparison of measurements of the CAARC standard tall building model in simulated model wind flows. J Wind Eng Ind Aerodyn 6:78–88 Melbourne WH (1980) Comparison of measurements of the CAARC standard tall building model in simulated model wind flows. J Wind Eng Ind Aerodyn 6:78–88
49.
Zurück zum Zitat Goliger AM, Milford RV (1988) Sensitivity of the CAARC standard building model to geometric scale and turbulence. J Wind Eng Ind Aerodyn 31:105–123 Goliger AM, Milford RV (1988) Sensitivity of the CAARC standard building model to geometric scale and turbulence. J Wind Eng Ind Aerodyn 31:105–123
56.
Zurück zum Zitat Levitan MC, Mehta KC (1992) Texas Tech field experiments for wind loads. Part I. Building and pressure measuring system. J Wind Eng Ind Aerodyn 43:1565–1576 Levitan MC, Mehta KC (1992) Texas Tech field experiments for wind loads. Part I. Building and pressure measuring system. J Wind Eng Ind Aerodyn 43:1565–1576
57.
Zurück zum Zitat Levitan MC, Mehta KC (1992) Texas tech field experiments for wind loads. Part II. Meteorological instrumentation and terrain parameters. J Wind Eng Ind Aerodyn 43:1577–1588 Levitan MC, Mehta KC (1992) Texas tech field experiments for wind loads. Part II. Meteorological instrumentation and terrain parameters. J Wind Eng Ind Aerodyn 43:1577–1588
58.
Zurück zum Zitat Cochran LS, Cermak JE (1992) Full- and model-scale cladding pressures on the Texas Tech University experimental building. J Wind Eng Ind Aerodyn 41–44:1589–1600 Cochran LS, Cermak JE (1992) Full- and model-scale cladding pressures on the Texas Tech University experimental building. J Wind Eng Ind Aerodyn 41–44:1589–1600
59.
Zurück zum Zitat Okada H, Ha Y-C (1992) Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Tech Building. J Wind Eng Ind Aerodyn 41–44:1601–1612 Okada H, Ha Y-C (1992) Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Tech Building. J Wind Eng Ind Aerodyn 41–44:1601–1612
60.
Zurück zum Zitat Cheung JCK, Holmes JD, Melbourne WH (1997) Pressures on a 110 scale model of the Texas Tech Building. J Wind Eng Ind Aerodyn 71:529–538 Cheung JCK, Holmes JD, Melbourne WH (1997) Pressures on a 110 scale model of the Texas Tech Building. J Wind Eng Ind Aerodyn 71:529–538
65.
Zurück zum Zitat Selvam RP (1996) Computation of flow around Texas Tech building using k–epsilon and Kato–Launder k–epsilon turbulence model. Eng Struct 18:856–860 Selvam RP (1996) Computation of flow around Texas Tech building using k–epsilon and Kato–Launder k–epsilon turbulence model. Eng Struct 18:856–860
72.
Zurück zum Zitat Vanella M, McDermott R, Forney G (2015) A cut-cell immersed boundary technique for fire dynamics simulation. In: APS division of fluid dynamics meeting abstracts, p L7.003 Vanella M, McDermott R, Forney G (2015) A cut-cell immersed boundary technique for fire dynamics simulation. In: APS division of fluid dynamics meeting abstracts, p L7.003
73.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2017) Fire Dynamics Simulator User’s Guide, 6th edn McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2017) Fire Dynamics Simulator User’s Guide, 6th edn
74.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator technical reference guide. Volume 2: verification, 6th edn. NIST Special Publication 1018 McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator technical reference guide. Volume 2: verification, 6th edn. NIST Special Publication 1018
75.
Zurück zum Zitat McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator technical reference guide. Volume 3: validation, 6th edn. NIST Special Publication 1018-3 McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2015) Fire Dynamics Simulator technical reference guide. Volume 3: validation, 6th edn. NIST Special Publication 1018-3
81.
Zurück zum Zitat Franke J (2007) Introduction to the prediction of wind loads on buildings by computational wind engineering (CWE). In: Stathopoulos T, Baniotopoulos CC (eds) Wind effects on buildings and design of wind-sensitive structures. Springer, Vienna, pp 67–103 Franke J (2007) Introduction to the prediction of wind loads on buildings by computational wind engineering (CWE). In: Stathopoulos T, Baniotopoulos CC (eds) Wind effects on buildings and design of wind-sensitive structures. Springer, Vienna, pp 67–103
84.
Zurück zum Zitat Office of Nuclear Regulatory Research (2012) Computational fluid dynamics best practice guidelines for dry cask applications draft report for comment Office of Nuclear Regulatory Research (2012) Computational fluid dynamics best practice guidelines for dry cask applications draft report for comment
85.
Zurück zum Zitat Launder BE, Spalding JL (1972) Lectures in mathematical models of turbulence. Academic Press, New YorkMATH Launder BE, Spalding JL (1972) Lectures in mathematical models of turbulence. Academic Press, New YorkMATH
87.
Zurück zum Zitat Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k–e eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24:227–238MATH Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k–e eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids 24:227–238MATH
88.
Zurück zum Zitat Wilcox DC (1988) Re-assessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310MathSciNetMATH Wilcox DC (1988) Re-assessment of the scale-determining equation for advanced turbulence models. AIAA J 26:1299–1310MathSciNetMATH
90.
Zurück zum Zitat Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91:99–164 Smagorinsky J (1963) General circulation experiments with the primitive equations. I. The basic experiment. Mon Weather Rev 91:99–164
91.
Zurück zum Zitat Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765MATH Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765MATH
92.
Zurück zum Zitat Sarwar M, Moinuddin K, Thorpe GR (2013) Large eddy simulation over backwards facing step using fire dynamics simulator (FDS). In: Fourteenth Asian congress of fluid dynamics, pp 469–474 Sarwar M, Moinuddin K, Thorpe GR (2013) Large eddy simulation over backwards facing step using fire dynamics simulator (FDS). In: Fourteenth Asian congress of fluid dynamics, pp 469–474
98.
Zurück zum Zitat Richards PJ, Hoxey RP (1993) Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. In: Computational wind engineering 1. Elsevier, Amsterdam, pp 145–153 Richards PJ, Hoxey RP (1993) Appropriate boundary conditions for computational wind engineering models using the k–ε turbulence model. In: Computational wind engineering 1. Elsevier, Amsterdam, pp 145–153
108.
Zurück zum Zitat Deaves DM, Harris RI (1978) A mathematical model of the structure of strong winds. CIRIA, London Deaves DM, Harris RI (1978) A mathematical model of the structure of strong winds. CIRIA, London
110.
111.
Zurück zum Zitat CEN (2010) EN 1991-1-4:2005+A1: Eurocode 1: actions on structures—part 1–4: general actions–wind actions CEN (2010) EN 1991-1-4:2005+A1: Eurocode 1: actions on structures—part 1–4: general actions–wind actions
112.
Zurück zum Zitat ASCE (2006) ASCE/SEI 7-05 minimum design loads for buildings and other structures ASCE (2006) ASCE/SEI 7-05 minimum design loads for buildings and other structures
113.
Zurück zum Zitat AS-NZS (2011) AS-NZS 1170-2 structural design actions—part 2: wind actions AS-NZS (2011) AS-NZS 1170-2 structural design actions—part 2: wind actions
114.
Zurück zum Zitat AIJ (2004) AIJ-RBL-1996 recommendations for loads on buildings AIJ (2004) AIJ-RBL-1996 recommendations for loads on buildings
115.
Zurück zum Zitat ISO (2009) ISO 4354:2009 wind actions on structures ISO (2009) ISO 4354:2009 wind actions on structures
116.
Zurück zum Zitat Dyrbye C, Hansen S. (1997) Wind loads on structures. Wiley, New York Dyrbye C, Hansen S. (1997) Wind loads on structures. Wiley, New York
117.
Zurück zum Zitat Holmes JD (2004) Wind loading of structures. Taylor & Francis, London Holmes JD (2004) Wind loading of structures. Taylor & Francis, London
118.
Zurück zum Zitat Simiu E, Scanlan RH (1996) Wind effects on structures. Wiley, New York Simiu E, Scanlan RH (1996) Wind effects on structures. Wiley, New York
119.
Zurück zum Zitat Tamura Y, Kareem A (2014) Advanced structural wind engineering. Springer, Berlin Tamura Y, Kareem A (2014) Advanced structural wind engineering. Springer, Berlin
129.
Zurück zum Zitat Tominaga Y, Mochida A, Okaze T, Sato T, Nemoto M, Motoyoshi H, Nakai S, Tsutsumi T, Otsuki M, Uamatsu T, Yoshino H (2011) Development of a system for predicting snow distribution in built-up environments: combining a mesoscale meteorological model and a CFD model. J Wind Eng Ind Aerodyn 99:460–468. https://doi.org/10.1016/j.jweia.2010.12.004 Tominaga Y, Mochida A, Okaze T, Sato T, Nemoto M, Motoyoshi H, Nakai S, Tsutsumi T, Otsuki M, Uamatsu T, Yoshino H (2011) Development of a system for predicting snow distribution in built-up environments: combining a mesoscale meteorological model and a CFD model. J Wind Eng Ind Aerodyn 99:460–468. https://​doi.​org/​10.​1016/​j.​jweia.​2010.​12.​004
137.
Zurück zum Zitat Forthofer JM, Butler BW, Mchugh CW, Finney MA, Bradshaw LS, Stratton RD, Shannon KS, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. Int J Wildl Fire 23:982–994. https://doi.org/10.1071/wf12090 Forthofer JM, Butler BW, Mchugh CW, Finney MA, Bradshaw LS, Stratton RD, Shannon KS, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part II. An exploratory study of the effect of simulated winds on fire growth simulations. Int J Wildl Fire 23:982–994. https://​doi.​org/​10.​1071/​wf12090
138.
Zurück zum Zitat Forthofer JM, Butler BW, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int J Wildland Fire 23:969–981. https://doi.org/10.1071/wf12089 Forthofer JM, Butler BW, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I. Model formulation and comparison against measurements. Int J Wildland Fire 23:969–981. https://​doi.​org/​10.​1071/​wf12089
139.
144.
Zurück zum Zitat Węgrzyński W, Krajewski G, Sulik P (2016) Case study 2—production and storage building (Poland). In: 11th conference on performance-based codes and fire safety design methods. SFPE, Warszawa Węgrzyński W, Krajewski G, Sulik P (2016) Case study 2—production and storage building (Poland). In: 11th conference on performance-based codes and fire safety design methods. SFPE, Warszawa
145.
Zurück zum Zitat CEN (2005) EN 1991-1-4:2005 Eurocode 1: actions on structures—part 1–4: general actions–wind actions CEN (2005) EN 1991-1-4:2005 Eurocode 1: actions on structures—part 1–4: general actions–wind actions
149.
Zurück zum Zitat Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. CRC Press, Boca Raton Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. CRC Press, Boca Raton
150.
Zurück zum Zitat Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, New York Quintiere JG (2006) Fundamentals of fire phenomena. Wiley, New York
151.
Zurück zum Zitat Babrauskas V (2003) Ignition handbook. Fire Science Publishers, Issaquah Babrauskas V (2003) Ignition handbook. Fire Science Publishers, Issaquah
152.
Zurück zum Zitat Drysdale DD (2011) An introduction to fire dynamics, 3rd edn. Wiley, New York Drysdale DD (2011) An introduction to fire dynamics, 3rd edn. Wiley, New York
154.
Zurück zum Zitat McGrattan K, Miles S (2016) Modeling fires using computational fluid dynamics (CFD). In: SFPE handbook of fire protection engineering. Springer, New York, pp 1034–1065 McGrattan K, Miles S (2016) Modeling fires using computational fluid dynamics (CFD). In: SFPE handbook of fire protection engineering. Springer, New York, pp 1034–1065
156.
Zurück zum Zitat Merci B, Beji T (2016) Fluid mechanics aspects of fire and smoke dynamics in enclosures. CRC Press, Boca Raton Merci B, Beji T (2016) Fluid mechanics aspects of fire and smoke dynamics in enclosures. CRC Press, Boca Raton
157.
Zurück zum Zitat Kuligowski ED (2016) Human behavior in fire. In: Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts JM Jr, Wieczorek CJ (eds) SFPE handbook of fire protection engineering. Springer, New York, pp 2070–2114 Kuligowski ED (2016) Human behavior in fire. In: Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, Torero JL, Watts JM Jr, Wieczorek CJ (eds) SFPE handbook of fire protection engineering. Springer, New York, pp 2070–2114
158.
Zurück zum Zitat Yamada T, Akizuki Y (2016) Visibility and human behavior in fire smoke. In: SFPE handbook of fire protection engineering. Springer, New York, pp 2181–2206 Yamada T, Akizuki Y (2016) Visibility and human behavior in fire smoke. In: SFPE handbook of fire protection engineering. Springer, New York, pp 2181–2206
159.
Zurück zum Zitat Purser DA, McAllister JL (2016) Assessment of hazards to occupants from smoke, toxic gases, and heat. In: SFPE handbook of fire protection engineering. Springer, New York, pp 2308–2428 Purser DA, McAllister JL (2016) Assessment of hazards to occupants from smoke, toxic gases, and heat. In: SFPE handbook of fire protection engineering. Springer, New York, pp 2308–2428
171.
177.
Zurück zum Zitat Węgrzyński W, Turkowski P (2015) Fire resistance of a roof tensile structure in parametric fire conditions calculated using CFD simulations and simplified calculation methods. In: SFPE Europe conference on fire safety engineering Węgrzyński W, Turkowski P (2015) Fire resistance of a roof tensile structure in parametric fire conditions calculated using CFD simulations and simplified calculation methods. In: SFPE Europe conference on fire safety engineering
178.
Zurück zum Zitat Węgrzyński W, Krajewski G (2015) ITB technical report 2752.3/15/Z00NP Węgrzyński W, Krajewski G (2015) ITB technical report 2752.3/15/Z00NP
Metadaten
Titel
Wind and Fire Coupled Modelling—Part II: Good Practice Guidelines
verfasst von
Wojciech Węgrzyński
Tomasz Lipecki
Grzegorz Krajewski
Publikationsdatum
23.06.2018
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 5/2018
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-018-0749-4

Weitere Artikel der Ausgabe 5/2018

Fire Technology 5/2018 Zur Ausgabe