Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 4/2020

01.07.2020 | CONTROL SYSTEMS OF MOVING OBJECTS

Wind Turbine of the Savonius–Magnus Type with Conical Blades: Dynamics and Control

verfasst von: M. V. Ishkhanyan, L. A. Klimina

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a mathematical model of a horizontal-axis wind-energy unit in which Savonius rotors are used instead of classical blades. The Magnus force formed due to the autorotation of Savonius rotors creates a momentum supporting the rotation of the central turbine shaft. The main difference of this study from earlier investigations in this area is as follows: we take into account the variation of the blade width along the radius. In our model, the conical Savonius rotor is replaced by a pair of cylindrical rotors with different diameters, which provides the possibility to use the experimental force-momentum characteristics, taking into account the substantial variations of the velocity field along the blade’s radius. In the model, we consider the possibility to control the value of the external electric resistance in the local circuit of the unit generator. We describe the dependence of the mechanical power on the parameters of the model and construct a control strategy providing the possibility to maintain the power close to the maximum possible value under changes in the wind velocity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Sun, Y. Zhuang, Y. Cao, D. Huang, and G. Wu, “A three-dimensional numerical study of the magnus wind turbine with different blade shapes,” J. Renewable Sustainable Energy 4, 063139 (2012).CrossRef X. Sun, Y. Zhuang, Y. Cao, D. Huang, and G. Wu, “A three-dimensional numerical study of the magnus wind turbine with different blade shapes,” J. Renewable Sustainable Energy 4, 063139 (2012).CrossRef
2.
Zurück zum Zitat N. Lopez, B. Mara, B. Mercado, L. Mercado, M. Pascual, and M. A. Promentilla, “Design of modified magnus wind rotors using computational fluid dynamics simulation and multi-response optimization,” J. Renewable Sustainable Energy 7, 063135 (2015).CrossRef N. Lopez, B. Mara, B. Mercado, L. Mercado, M. Pascual, and M. A. Promentilla, “Design of modified magnus wind rotors using computational fluid dynamics simulation and multi-response optimization,” J. Renewable Sustainable Energy 7, 063135 (2015).CrossRef
3.
Zurück zum Zitat G. Richmond-Navarro, W. R. Calderon-Munoz, R. LeBoeuf, and P. Castillo, “A Magnus wind turbine power model based on direct solutions using the blade element momentum theory and symbolic regression,” IEEE Trans. Sustainable Energy 8, 425–430 (2017).CrossRef G. Richmond-Navarro, W. R. Calderon-Munoz, R. LeBoeuf, and P. Castillo, “A Magnus wind turbine power model based on direct solutions using the blade element momentum theory and symbolic regression,” IEEE Trans. Sustainable Energy 8, 425–430 (2017).CrossRef
4.
Zurück zum Zitat R. N. Gustavo, U. S. Noel, and R. Giancarlo, “High correlation models for small scale Magnus wind turbines,” in Proceedings of the 5th 2018 International Conference on Renewable Energy: Generation and Applications (ICREGA) (IEEE, Al Ain, 2018), pp. 11–15. R. N. Gustavo, U. S. Noel, and R. Giancarlo, “High correlation models for small scale Magnus wind turbines,” in Proceedings of the 5th 2018 International Conference on Renewable Energy: Generation and Applications (ICREGA) (IEEE, Al Ain, 2018), pp. 11–15.
5.
Zurück zum Zitat S. J. Savonius, “Rotor adapted to be driven by wind or flowing water,” U. S. Patent No. 1697574 A (1929). S. J. Savonius, “Rotor adapted to be driven by wind or flowing water,” U. S. Patent No. 1697574 A (1929).
6.
Zurück zum Zitat I. Akira, S. Kawashima, Y. Nishizawa, I. Ushiyama, and N. Komatinovic, “Study on Savonius type Magnus wind turbine,” in Proceedings of the European Wind Energy Conference and Exhibition,2007. www.researchgate.net/publication/240627785_A_Study_on_Savonius_Type_Magnus_Wind_Turbine. I. Akira, S. Kawashima, Y. Nishizawa, I. Ushiyama, and N. Komatinovic, “Study on Savonius type Magnus wind turbine,” in Proceedings of the European Wind Energy Conference and Exhibition,2007. www.researchgate.net/publication/240627785_A_Study_on_Savonius_Type_Magnus_Wind_Turbine.
7.
Zurück zum Zitat M. V. Ishkhanyan, L. A. Klimina, and O. G. Privalova, “Mathematical modeling of the Magnus-effect-based wind turbine,” Mekhatron. Avtomatiz. Upravl. 19 (8), 523–528 (2018).CrossRef M. V. Ishkhanyan, L. A. Klimina, and O. G. Privalova, “Mathematical modeling of the Magnus-effect-based wind turbine,” Mekhatron. Avtomatiz. Upravl. 19 (8), 523–528 (2018).CrossRef
8.
Zurück zum Zitat M. Dosaev, M. Ishkhanyan, L. Klimina, O. Privalova, and Yu. Selyutskiy, “Wind car driven by the Magnus force,” in ROMANSY 22—Robot Design, Dynamics and Control. Proceedings of the 22nd CISM IFToMM Symposium, June 25–28,2018, Rennes, France, Vol. 584 of CISM International Centre for Mechanical Sciences (Springer, Cham, 2019), pp. 189–195. https://doi.org/10.1007/978-3-319-78963-7_25 M. Dosaev, M. Ishkhanyan, L. Klimina, O. Privalova, and Yu. Selyutskiy, “Wind car driven by the Magnus force,” in ROMANSY 22—Robot Design, Dynamics and Control. Proceedings of the 22nd CISM IFToMM Symposium, June 25–28,2018, Rennes, France, Vol. 584 of CISM International Centre for Mechanical Sciences (Springer, Cham, 2019), pp. 189–195. https://​doi.​org/​10.​1007/​978-3-319-78963-7_​25
9.
Zurück zum Zitat M. Z. Dosaev, L. A. Klimina, B. Ya. Lokshin, and Yu. D. Selyutskii, “On wind turbine blade design optimization,” J. Comput. Syst. Sci. Int. 53, 402 (2014).MathSciNetCrossRef M. Z. Dosaev, L. A. Klimina, B. Ya. Lokshin, and Yu. D. Selyutskii, “On wind turbine blade design optimization,” J. Comput. Syst. Sci. Int. 53, 402 (2014).MathSciNetCrossRef
10.
Zurück zum Zitat V. G. Bach, “Untersuchungen über Savonius-Rotoren und verwandte Stromungsmaschinen,” Forsch. Gebiet Ingenieurwes. A 2, 218–231 (1931).CrossRef V. G. Bach, “Untersuchungen über Savonius-Rotoren und verwandte Stromungsmaschinen,” Forsch. Gebiet Ingenieurwes. A 2, 218–231 (1931).CrossRef
11.
Zurück zum Zitat Y. D. Selyutskiy, L. A. Klimina, A. A. Masterova, S. S. Hwang, and C. H. Lin, “Savonius rotor as a part of complex systems,” J. Sound Vibr. 442, 1–10 (2019).CrossRef Y. D. Selyutskiy, L. A. Klimina, A. A. Masterova, S. S. Hwang, and C. H. Lin, “Savonius rotor as a part of complex systems,” J. Sound Vibr. 442, 1–10 (2019).CrossRef
12.
Zurück zum Zitat L. D. Akulenko, Ya. S. Zinkevich, D. D. Leshchenko, and A. L. Rachinskaya, “Optimal rotation deceleration of a dynamically symmetric body with movable mass in a resistant medium,” J. Comput. Syst. Sci. Int. 50, 198 (2011).MathSciNetCrossRef L. D. Akulenko, Ya. S. Zinkevich, D. D. Leshchenko, and A. L. Rachinskaya, “Optimal rotation deceleration of a dynamically symmetric body with movable mass in a resistant medium,” J. Comput. Syst. Sci. Int. 50, 198 (2011).MathSciNetCrossRef
13.
Zurück zum Zitat P. Jaohindy, H. Ennamiri, F. Garde, and A. Bastide, “Numerical investigation of airflow through a savonius rotor,” Wind Energy 17, 853–868 (2014).CrossRef P. Jaohindy, H. Ennamiri, F. Garde, and A. Bastide, “Numerical investigation of airflow through a savonius rotor,” Wind Energy 17, 853–868 (2014).CrossRef
14.
Zurück zum Zitat S. Roy and A. Ducoin, “Unsteady analysis on the instantaneous forces and moment arms acting on a novel savonius-style wind turbine,” Energy Convers. Manage. 121, 281–296 (2016).CrossRef S. Roy and A. Ducoin, “Unsteady analysis on the instantaneous forces and moment arms acting on a novel savonius-style wind turbine,” Energy Convers. Manage. 121, 281–296 (2016).CrossRef
15.
Zurück zum Zitat J. Thé and H. Yu, “A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods,” Energy 138, 257–289 (2017).CrossRef J. Thé and H. Yu, “A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods,” Energy 138, 257–289 (2017).CrossRef
16.
Zurück zum Zitat M. Z. Dosaev, V. A. Samsonov, Yu. D. Selyutskii, Wen-Lung Lu, and Ching-Huei Lu, “Bifurcation of operation modes of small wind power stations and optimization of their characteristics,” Mech. Solids 44, 214–221 (2009).CrossRef M. Z. Dosaev, V. A. Samsonov, Yu. D. Selyutskii, Wen-Lung Lu, and Ching-Huei Lu, “Bifurcation of operation modes of small wind power stations and optimization of their characteristics,” Mech. Solids 44, 214–221 (2009).CrossRef
17.
Zurück zum Zitat M. Z. Dosaev, V. A. Samsonov, and Yu. D. Seliutski, “On the dynamics of a small-scale wind power generator,” Dokl. Phys. 52, 493–495 (2007).CrossRef M. Z. Dosaev, V. A. Samsonov, and Yu. D. Seliutski, “On the dynamics of a small-scale wind power generator,” Dokl. Phys. 52, 493–495 (2007).CrossRef
18.
Zurück zum Zitat T. Hayashi, Y. Li, and Y. Hara, “Wind tunnel tests on a different phase three-stage Savonius rotor,” JSME Int. J., Ser. B 48, 9–16 (2005). T. Hayashi, Y. Li, and Y. Hara, “Wind tunnel tests on a different phase three-stage Savonius rotor,” JSME Int. J., Ser. B 48, 9–16 (2005).
19.
Zurück zum Zitat J. H. Lee, Y. T. Lee, and H. C. Lim, “Effect of twist angle on the performance of Savonius wind turbine,” Renewable Energy 89, 231–244 (2016).CrossRef J. H. Lee, Y. T. Lee, and H. C. Lim, “Effect of twist angle on the performance of Savonius wind turbine,” Renewable Energy 89, 231–244 (2016).CrossRef
20.
Zurück zum Zitat N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations, 2nd ed. (Nauka, Moscow, 1974) [in Russian].MATH N. N. Bogolyubov and Yu. A. Mitropol’skii, Asymptotic Methods in the Theory of Nonlinear Oscillations, 2nd ed. (Nauka, Moscow, 1974) [in Russian].MATH
21.
Zurück zum Zitat L. A. Klimina and Yu. D. Selyutskiy, “Method to construct periodic solutions of controlled second-order dynamical systems,” J. Comput. Syst. Sci. Int. 58, 503 (2019).CrossRef L. A. Klimina and Yu. D. Selyutskiy, “Method to construct periodic solutions of controlled second-order dynamical systems,” J. Comput. Syst. Sci. Int. 58, 503 (2019).CrossRef
Metadaten
Titel
Wind Turbine of the Savonius–Magnus Type with Conical Blades: Dynamics and Control
verfasst von
M. V. Ishkhanyan
L. A. Klimina
Publikationsdatum
01.07.2020
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 4/2020
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230720040085

Weitere Artikel der Ausgabe 4/2020

Journal of Computer and Systems Sciences International 4/2020 Zur Ausgabe