Skip to main content
Erschienen in:

20.05.2024

WMHMT-IWD: Weibull Mixtures-HMT Based Image Watermark Detector

verfasst von: Xiangyang Wang, Yixuan Shen, Long Song, Panpan Niu

Erschienen in: Circuits, Systems, and Signal Processing | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Balancing imperceptibility, data payload and robustness is a crucial and unsolved issue in the area of digital watermarking. It has been found that the method based on statistical modeling can alleviate the contradiction among them. On the basis of this, we suggest a novel image watermark detector based on Weibull Mixtures-HMT model in this paper. The Otsu-Canny edge detection method is used to select the high entropy blocks in the target subband obtained by non-subsampled shearlet transform (NSST), and fast polar complex exponential transform (FPCET) is computed on the target blocks to obtain the NSST–FPCET magnitude domain. The digital watermark is inserted into the NSST–FPCET magnitude domain by a multiplicative method. In the statistical modeling step, the NSST–FPCET magnitudes are modeled by Weibull Mixtures-HMT model, where Weibull Mixture model describes the distribution characteristic of the NSST–FPCET magnitudes while the HMT model describes the dependency between the NSST–FPCET magnitudes. Parameters of the proposed model are estimated by an efficient variance reduced stochastic expectation maximization method. Using the locally most powerful test, we finally develop an image watermark detector based on Weibull Mixtures-HMT model. Massive experiments demonstrate that the designed scheme has an impressive performance in detecting the presence of the watermark, and it can achieve a better balance among the data payload, imperceptibility and robustness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelektronik

Die Fachzeitschrift ATZelektronik bietet für Entwickler und Entscheider in der Automobil- und Zulieferindustrie qualitativ hochwertige und fundierte Informationen aus dem gesamten Spektrum der Pkw- und Nutzfahrzeug-Elektronik. 

Lassen Sie sich jetzt unverbindlich 2 kostenlose Ausgabe zusenden.

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat B. Ahmaderaghi, F. Kurugollu, J.M.D. Rincon, A. Bouridane, Blind image watermark detection algorithm based on discrete shearlet transform using statistical decision theory. IEEE Trans. Comput. Imag. 4, 46–59 (2018)MathSciNetCrossRef B. Ahmaderaghi, F. Kurugollu, J.M.D. Rincon, A. Bouridane, Blind image watermark detection algorithm based on discrete shearlet transform using statistical decision theory. IEEE Trans. Comput. Imag. 4, 46–59 (2018)MathSciNetCrossRef
2.
Zurück zum Zitat S. Akpinar, E.K. Akpinar, Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 50, 877–884 (2009)CrossRef S. Akpinar, E.K. Akpinar, Estimation of wind energy potential using finite mixture distribution models. Energy Convers. Manag. 50, 877–884 (2009)CrossRef
3.
Zurück zum Zitat M. Amini, M.O. Ahmad, M.N.S. Swamy, A robust multibit multiplicative watermark decoder using vector-based hidden Markov model in wavelet domain. IEEE Trans. Circuits Syst. Video Technol. 28, 402–413 (2016)CrossRef M. Amini, M.O. Ahmad, M.N.S. Swamy, A robust multibit multiplicative watermark decoder using vector-based hidden Markov model in wavelet domain. IEEE Trans. Circuits Syst. Video Technol. 28, 402–413 (2016)CrossRef
4.
Zurück zum Zitat M. Amini, H. Sadreazam, M.O. Ahmad, M.N.S. Swamy, A channel-dependent statistical watermark detector for color images. IEEE Trans. Multimed. 21, 65–73 (2019)CrossRef M. Amini, H. Sadreazam, M.O. Ahmad, M.N.S. Swamy, A channel-dependent statistical watermark detector for color images. IEEE Trans. Multimed. 21, 65–73 (2019)CrossRef
5.
Zurück zum Zitat M. Amini, H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, Multichannel color image watermark detection utilizing vector-based hidden Markov model, in IEEE International Symposium on Circuits and Systems, (2017), pp. 1–4 M. Amini, H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, Multichannel color image watermark detection utilizing vector-based hidden Markov model, in IEEE International Symposium on Circuits and Systems, (2017), pp. 1–4
6.
Zurück zum Zitat M. Amirmazlaghani, Additive watermark detection in the wavelet domain using 2D-GARCH model. Inf. Sci. 370, 1–17 (2016)MathSciNetCrossRef M. Amirmazlaghani, Additive watermark detection in the wavelet domain using 2D-GARCH model. Inf. Sci. 370, 1–17 (2016)MathSciNetCrossRef
7.
Zurück zum Zitat M. Amirmazlaghani, Heteroscedastic watermark detector in the contourlet domain. IET Comput. Vision 13, 249–260 (2019)CrossRef M. Amirmazlaghani, Heteroscedastic watermark detector in the contourlet domain. IET Comput. Vision 13, 249–260 (2019)CrossRef
8.
Zurück zum Zitat S. Ayesha, V. Masilamani, A robust multiplicative watermarking technique for digital images in curvelet domain using normal inverse Gaussian distribution. Multimed. Tools Appl. 82, 9223–9241 (2023)CrossRef S. Ayesha, V. Masilamani, A robust multiplicative watermarking technique for digital images in curvelet domain using normal inverse Gaussian distribution. Multimed. Tools Appl. 82, 9223–9241 (2023)CrossRef
9.
Zurück zum Zitat M. Barazandeh, M. Amirmazlaghani, A new statistical detector for additive image watermarking based on dual-tree complex wavelet transform, in Proceedings of the IEEE 2nd International Conference of Signal Processing and Intelligent Systems, (2016) pp. 1–5 M. Barazandeh, M. Amirmazlaghani, A new statistical detector for additive image watermarking based on dual-tree complex wavelet transform, in Proceedings of the IEEE 2nd International Conference of Signal Processing and Intelligent Systems, (2016) pp. 1–5
10.
Zurück zum Zitat M. Begum, M.S. Uddin, Implementation of secured and robust DFT-based image watermark through hybridization with decomposition algorithm. SN Comput. Sci. 2, 221 (2021)CrossRef M. Begum, M.S. Uddin, Implementation of secured and robust DFT-based image watermark through hybridization with decomposition algorithm. SN Comput. Sci. 2, 221 (2021)CrossRef
11.
Zurück zum Zitat P. Bhinder, K. Singh, N. Jindal, Image-adaptive watermarking using maximum likelihood decoder for medical images. Multimed. Tools Appl. 77, 10303–10328 (2018)CrossRef P. Bhinder, K. Singh, N. Jindal, Image-adaptive watermarking using maximum likelihood decoder for medical images. Multimed. Tools Appl. 77, 10303–10328 (2018)CrossRef
12.
Zurück zum Zitat L. Cai, X. Tian, S. Chen, Monitoring nonlinear and non-Gaussian processes using Gaussian mixture model-based weighted kernel independent component analysis. IEEE Trans. Neural Netw. Learn. Syst. 28, 122–135 (2015)CrossRef L. Cai, X. Tian, S. Chen, Monitoring nonlinear and non-Gaussian processes using Gaussian mixture model-based weighted kernel independent component analysis. IEEE Trans. Neural Netw. Learn. Syst. 28, 122–135 (2015)CrossRef
13.
Zurück zum Zitat D. Chauhan, A. Singh, A. Adarsh, B. Kumar, J. Saini, Combining Mexican hat wavelet and spread spectrum for adaptive watermarking and its statistical detection using medical images. Multimed. Tools Appl. 78, 12647–12661 (2019)CrossRef D. Chauhan, A. Singh, A. Adarsh, B. Kumar, J. Saini, Combining Mexican hat wavelet and spread spectrum for adaptive watermarking and its statistical detection using medical images. Multimed. Tools Appl. 78, 12647–12661 (2019)CrossRef
14.
Zurück zum Zitat J. Chen, J. Zhu, Y.W. Teh, T. Zhang, Stochastic expectation maximization with variance reduction. Adv. Neural. Inf. Process. Syst. 31, 7969–7977 (2018) J. Chen, J. Zhu, Y.W. Teh, T. Zhang, Stochastic expectation maximization with variance reduction. Adv. Neural. Inf. Process. Syst. 31, 7969–7977 (2018)
15.
Zurück zum Zitat M.S. Crouse, R.D. Nowak, R.G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46, 886–902 (1998)MathSciNetCrossRef M.S. Crouse, R.D. Nowak, R.G. Baraniuk, Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process. 46, 886–902 (1998)MathSciNetCrossRef
16.
Zurück zum Zitat L. Dong, Q. Yan, Y. Lv, S.Y. Deng, Full band watermarking in DCT domain with Weibull model. Multimed. Tools Appl. 76, 1983–2000 (2017)CrossRef L. Dong, Q. Yan, Y. Lv, S.Y. Deng, Full band watermarking in DCT domain with Weibull model. Multimed. Tools Appl. 76, 1983–2000 (2017)CrossRef
17.
Zurück zum Zitat G. Easley, D. Labate, Q. Lim, Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25, 25–46 (2018)MathSciNetCrossRef G. Easley, D. Labate, Q. Lim, Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25, 25–46 (2018)MathSciNetCrossRef
18.
Zurück zum Zitat S. Etemad, M. Amirmazlaghani, A new multiplicative watermark detector in the contourlet domain using t location-scale distribution. Pattern Recogn. 77, 99–112 (2018)CrossRef S. Etemad, M. Amirmazlaghani, A new multiplicative watermark detector in the contourlet domain using t location-scale distribution. Pattern Recogn. 77, 99–112 (2018)CrossRef
19.
Zurück zum Zitat M. Fang, G. Yue, Q. Yu, The study on an application of Otsu method in Canny operator, in 2009 International Symposium on Information Processing (2009), p. 109 M. Fang, G. Yue, Q. Yu, The study on an application of Otsu method in Canny operator, in 2009 International Symposium on Information Processing (2009), p. 109
20.
Zurück zum Zitat K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39, 298–318 (2007)MathSciNetCrossRef K. Guo, D. Labate, Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39, 298–318 (2007)MathSciNetCrossRef
21.
Zurück zum Zitat N.E. Lasmar, Y. Berthoumieu, Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans. Image Process. 23, 2246–2261 (2014)MathSciNetCrossRef N.E. Lasmar, Y. Berthoumieu, Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans. Image Process. 23, 2246–2261 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat J. Liu, An image watermarking algorithm based on energy scheme in the wavelet transform domain, in 2018 IEEE 3rd International Conference on Image, Vision and Computing, (2018), pp. 668–672 J. Liu, An image watermarking algorithm based on energy scheme in the wavelet transform domain, in 2018 IEEE 3rd International Conference on Image, Vision and Computing, (2018), pp. 668–672
23.
Zurück zum Zitat Y. Liu, S. Zhang, J. Yang, Color image watermark decoder by modeling quaternion polar harmonic transform with BKF distribution. Signal Process. Image Commun. 88, 115946 (2020)CrossRef Y. Liu, S. Zhang, J. Yang, Color image watermark decoder by modeling quaternion polar harmonic transform with BKF distribution. Signal Process. Image Commun. 88, 115946 (2020)CrossRef
24.
Zurück zum Zitat P. Niu, X. Shen, T. Wen, H. Yang, X. Wang, Blind image watermark decoder in UDTCWT domain using Weibull mixtures-based vector HMT. IEEE Access 8, 46624–46641 (2020)CrossRef P. Niu, X. Shen, T. Wen, H. Yang, X. Wang, Blind image watermark decoder in UDTCWT domain using Weibull mixtures-based vector HMT. IEEE Access 8, 46624–46641 (2020)CrossRef
25.
Zurück zum Zitat P. Niu, F. Wang, J. Tian, J. Cai, X. Wang, RDWT domain statistical watermark detector using FRHFMs magnitudes and bivariate Cauchy-Rayleigh distribution. Multimed. Tools Appl. 81, 21241–21278 (2022)CrossRef P. Niu, F. Wang, J. Tian, J. Cai, X. Wang, RDWT domain statistical watermark detector using FRHFMs magnitudes and bivariate Cauchy-Rayleigh distribution. Multimed. Tools Appl. 81, 21241–21278 (2022)CrossRef
26.
Zurück zum Zitat P. Niu, L. Wang, J. Tian, S. Zhang, X. Wang, A statistical color image watermarking scheme using local QPCET and Cauchy-Rayleigh distribution. Circuits Syst. Signal Process. 40, 4516–4545 (2021)CrossRef P. Niu, L. Wang, J. Tian, S. Zhang, X. Wang, A statistical color image watermarking scheme using local QPCET and Cauchy-Rayleigh distribution. Circuits Syst. Signal Process. 40, 4516–4545 (2021)CrossRef
27.
Zurück zum Zitat M. Rabizadeh, M. Amirmazlaghani, M. Ahmadian-Attari, A new detector for contourlet domain multiplicative image watermarking using Bessel K form distribution. J. Vis. Commun. Image Represent. 40, 324–334 (2016)CrossRef M. Rabizadeh, M. Amirmazlaghani, M. Ahmadian-Attari, A new detector for contourlet domain multiplicative image watermarking using Bessel K form distribution. J. Vis. Commun. Image Represent. 40, 324–334 (2016)CrossRef
28.
Zurück zum Zitat H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, A study of multiplicative watermark detection in the contourlet domain using alpha-stable distributions. IEEE Trans. Image Process. 23, 4348–4360 (2014)MathSciNetCrossRef H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, A study of multiplicative watermark detection in the contourlet domain using alpha-stable distributions. IEEE Trans. Image Process. 23, 4348–4360 (2014)MathSciNetCrossRef
29.
Zurück zum Zitat H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution. IEEE Trans. Multimed. 18, 196–207 (2015)CrossRef H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution. IEEE Trans. Multimed. 18, 196–207 (2015)CrossRef
30.
Zurück zum Zitat H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, A robust multiplicative watermark detector for color images in sparse domain. IEEE Trans. Circuits Syst. II Express Briefs 62, 1159–1163 (2015) H. Sadreazami, M.O. Ahmad, M.N.S. Swamy, A robust multiplicative watermark detector for color images in sparse domain. IEEE Trans. Circuits Syst. II Express Briefs 62, 1159–1163 (2015)
31.
Zurück zum Zitat H. Sadreazami, M. Amini, A robust image watermarking scheme using local statistical distribution in the contourlet domain. IEEE Trans. Circuits Syst. II Express Briefs 66, 151–155 (2019) H. Sadreazami, M. Amini, A robust image watermarking scheme using local statistical distribution in the contourlet domain. IEEE Trans. Circuits Syst. II Express Briefs 66, 151–155 (2019)
32.
Zurück zum Zitat A.K. Singh, Data hiding: current trends, innovation and potential challenges. ACM Trans. Multimed. Comput. Commun. Appl. 16, 1–16 (2021)MathSciNetCrossRef A.K. Singh, Data hiding: current trends, innovation and potential challenges. ACM Trans. Multimed. Comput. Commun. Appl. 16, 1–16 (2021)MathSciNetCrossRef
33.
Zurück zum Zitat B. Swiderski, S. Osowski, M. Kruk, J. Kurek, Texture characterization based on the Kolmogorov–Smirnov distance. Expert Syst. Appl. 42, 503–509 (2015)CrossRef B. Swiderski, S. Osowski, M. Kruk, J. Kurek, Texture characterization based on the Kolmogorov–Smirnov distance. Expert Syst. Appl. 42, 503–509 (2015)CrossRef
34.
Zurück zum Zitat W. Wan, J. Wang, Y. Zhang, J. Li, H. Yu, J. Sun, A comprehensive survey on robust image watermarking. Neurocomputing 448, 226–247 (2022)CrossRef W. Wan, J. Wang, Y. Zhang, J. Li, H. Yu, J. Sun, A comprehensive survey on robust image watermarking. Neurocomputing 448, 226–247 (2022)CrossRef
35.
Zurück zum Zitat X. Wang, P. Niu, J. Tian, A new statistical image watermark detector in RHFMs domain using Beta exponential distribution. Soft. Comput. 26, 9707–9727 (2022)CrossRef X. Wang, P. Niu, J. Tian, A new statistical image watermark detector in RHFMs domain using Beta exponential distribution. Soft. Comput. 26, 9707–9727 (2022)CrossRef
36.
Zurück zum Zitat X. Wang, X. Shen, P. Niu, H. Yang, BGGMM-HMT based locally optimum image watermark detector in high-order NSST difference domain. J. Vis. Commun. Image Represent. 83, 103450 (2022)CrossRef X. Wang, X. Shen, P. Niu, H. Yang, BGGMM-HMT based locally optimum image watermark detector in high-order NSST difference domain. J. Vis. Commun. Image Represent. 83, 103450 (2022)CrossRef
37.
Zurück zum Zitat X. Wang, X. Shen, J. Tian, P. Niu, H. Yang, Locally optimum image watermark detector based on statistical modeling of SWT-EFMs magnitudes. J. Inf. Secur. Appl. 65, 103105 (2022) X. Wang, X. Shen, J. Tian, P. Niu, H. Yang, Locally optimum image watermark detector based on statistical modeling of SWT-EFMs magnitudes. J. Inf. Secur. Appl. 65, 103105 (2022)
38.
Zurück zum Zitat X. Wang, C. Wang, L. Wang, H. Yang, P. Niu, Robust and effective multiple copy-move forgeries detection and localization. Pattern Anal. Appl. 24, 1025–1046 (2021)CrossRef X. Wang, C. Wang, L. Wang, H. Yang, P. Niu, Robust and effective multiple copy-move forgeries detection and localization. Pattern Anal. Appl. 24, 1025–1046 (2021)CrossRef
39.
Zurück zum Zitat Z. Xia, C. Wang, Y. Li, B. Yu, Y. Zhan, Geometrical attacks resilient statistical watermark decoder using polar harmonic Fourier moments. J. Franklin Inst. 360, 4493–4518 (2023)CrossRef Z. Xia, C. Wang, Y. Li, B. Yu, Y. Zhan, Geometrical attacks resilient statistical watermark decoder using polar harmonic Fourier moments. J. Franklin Inst. 360, 4493–4518 (2023)CrossRef
40.
Zurück zum Zitat P.T. Yap, X. Jiang, A.C. Kot, Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1259–1270 (2009) P.T. Yap, X. Jiang, A.C. Kot, Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1259–1270 (2009)
41.
Zurück zum Zitat K. Zebbiche, F. Khelifi, K. Loukhaoukha, Robust additive watermarking in the DTCWT domain based on perceptual masking. Multimed. Tools Appl. 77, 21281–21304 (2018)CrossRef K. Zebbiche, F. Khelifi, K. Loukhaoukha, Robust additive watermarking in the DTCWT domain based on perceptual masking. Multimed. Tools Appl. 77, 21281–21304 (2018)CrossRef
Metadaten
Titel
WMHMT-IWD: Weibull Mixtures-HMT Based Image Watermark Detector
verfasst von
Xiangyang Wang
Yixuan Shen
Long Song
Panpan Niu
Publikationsdatum
20.05.2024
Verlag
Springer US
Erschienen in
Circuits, Systems, and Signal Processing / Ausgabe 9/2024
Print ISSN: 0278-081X
Elektronische ISSN: 1531-5878
DOI
https://doi.org/10.1007/s00034-024-02702-5