Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.03.2019 | Focus | Ausgabe 8/2020

Soft Computing 8/2020

WOA + BRNN: An imbalanced big data classification framework using Whale optimization and deep neural network

Zeitschrift:
Soft Computing > Ausgabe 8/2020
Autoren:
Eslam. M. Hassib, Ali. I. El-Desouky, Labib. M. Labib, El-Sayed M. El-kenawy
Wichtige Hinweise
Communicated by B. B. Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Nowadays, big data plays a substantial part in information knowledge analysis, manipulation, and forecasting. Analyzing and extracting knowledge from such big datasets are a very challenging task due to the imbalance of data distribution, which could lead to a biased classification results and wrong decisions. The standard classifiers are not capable of handling such datasets. Hence, a new technique for dealing with such datasets is required. This paper proposes a novel classification framework for big data that consists of three developed phases. The first phase is the feature selection phase, which uses the Whale optimization algorithm (WOA) for finding the best set of features. The second phase is the preprocessing phase, which uses the SMOTE algorithm and the LSH-SMOTE algorithm for solving the class imbalance problem. Lastly, the third phase is WOA + BRNN algorithm, which is using the Whale optimization algorithm for training a deep learning approach called bidirectional recurrent neural network for the first time. Our proposed algorithm WOA-BRNN has been tested against nine highly imbalanced datasets one of them is big dataset in terms of area under curve (AUC) against four of the most common use machine learning algorithms (Naïve Bayes, AdaBoostM1, decision table, random tree), in addition to GWO-MLP (training multilayer perceptron using Gray Wolf Optimizer), then we test our algorithm over four well-known datasets against GWO-MLP and particle swarm optimization (PSO-MLP), genetic algorithm (GA-MLP), ant colony optimization (ACO-MLP), evolution strategy (ES-MLP), and population-based incremental learning (PBIL-MLP) in terms of classification accuracy. Experimental results proved that our proposed algorithm WOA + BRNN has achieved promising accuracy and high local optima avoidance, and outperformed four of the most common use machine learning algorithms, and GWO-MLP in terms of AUC.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2020

Soft Computing 8/2020 Zur Ausgabe

Premium Partner

    Bildnachweise