Skip to main content
Erschienen in: European Journal of Wood and Wood Products 5/2016

15.04.2016 | Original

Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system

verfasst von: Michael Altgen, Wim Willems, Holger Militz

Erschienen in: European Journal of Wood and Wood Products | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The degradation of beech wood during a thermal modification process in a high-pressure reactor system using steam as medium was investigated. The wood was modified at different peak temperatures (150–180 °C), peak durations (1–6 h) and maximum water vapor pressures (0.14–0.79 MPa), while wood mass loss and wood moisture content as well as soluble degradation products were analyzed. Wood degradation was found to be predominantly determined by the maximum pressure, rather than the peak temperature applied. However, accumulation of degradation products, i.e., carbohydrates and furfural, in wood modified at elevated pressure had to be considered when using mass loss as a marker for wood degradation. Mass loss and mass loss rate increased with the maximum pressure until reaching saturation at mass losses above 20 %, due to the limited amount of amorphous carbohydrates within the wood. Several factors have been discussed with regard to their impact on accelerated degradation reactions at elevated water vapor pressure, such as a better heat transfer in a compressed gas atmosphere, reduced evaporative cooling, the accumulation of organic acids as well as the presence of water in the wood during the process. However, none of these individual factors were completely consistent with the observed mass loss progression, which leads to the conclusion that the impact of elevated water vapor pressure, rather, is a combination of several factors that apply simultaneously. The application of elevated pressure might enable an effective process technique to generate sufficient wood degradation to upgrade dimensional stability and biological durability of wood at a low temperature range.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alen R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36(2):163–171CrossRef Alen R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36(2):163–171CrossRef
Zurück zum Zitat Altgen M, Ala-Viikari J, Hukka A, Tetri T, Militz H (2014) Impact of elevated steam pressure during the thermal modification of Scots pine and Norway spruce. In: COST Action FP0904 workshop, Skelleftea, Sweden Altgen M, Ala-Viikari J, Hukka A, Tetri T, Militz H (2014) Impact of elevated steam pressure during the thermal modification of Scots pine and Norway spruce. In: COST Action FP0904 workshop, Skelleftea, Sweden
Zurück zum Zitat Borrega M, Kärenlampi P (2008) Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci 54(4):323–328CrossRef Borrega M, Kärenlampi P (2008) Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci 54(4):323–328CrossRef
Zurück zum Zitat Burmester A (1973) Einfluß einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit (Effect of heat-pressure-treatments of semi-dry wood on its dimensional stability) (In German). Holz Roh Werkst 31(6):237–243CrossRef Burmester A (1973) Einfluß einer Wärme-Druck-Behandlung halbtrockenen Holzes auf seine Formbeständigkeit (Effect of heat-pressure-treatments of semi-dry wood on its dimensional stability) (In German). Holz Roh Werkst 31(6):237–243CrossRef
Zurück zum Zitat Burmester A (1975) Zur Dimensionsstabilisierung von Holz. (The dimensional stabilization of wood) (In German). Holz Roh Werkst 33(9):333–335CrossRef Burmester A (1975) Zur Dimensionsstabilisierung von Holz. (The dimensional stabilization of wood) (In German). Holz Roh Werkst 33(9):333–335CrossRef
Zurück zum Zitat Candelier K, Dumarçay S, Pétrissans A, Desharnais L, Gérardin P, Pétrissans M (2013) Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: nitrogen or vacuum. Polym Degrad Stabil 98(2):677–681CrossRef Candelier K, Dumarçay S, Pétrissans A, Desharnais L, Gérardin P, Pétrissans M (2013) Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: nitrogen or vacuum. Polym Degrad Stabil 98(2):677–681CrossRef
Zurück zum Zitat Chow SZ, Pickles KJ (1971) Thermal softening and degradation of wood and bark. Wood Fiber Sci 3(3):166–178 Chow SZ, Pickles KJ (1971) Thermal softening and degradation of wood and bark. Wood Fiber Sci 3(3):166–178
Zurück zum Zitat Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646CrossRef Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646CrossRef
Zurück zum Zitat Ding T, Gu LB, Liu X (2011) Influcence of steam pressure on chemical changes of heat-treated mongolian pine wood. BioResources 6(2):1880–1889 Ding T, Gu LB, Liu X (2011) Influcence of steam pressure on chemical changes of heat-treated mongolian pine wood. BioResources 6(2):1880–1889
Zurück zum Zitat DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28(3):350–356CrossRef DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric Method for Determination of Sugars and Related Substances. Anal Chem 28(3):350–356CrossRef
Zurück zum Zitat Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404 Esteves BM, Pereira HM (2009) Wood modification by heat treatment: a review. BioResources 4(1):370–404
Zurück zum Zitat Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613 Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, p 613
Zurück zum Zitat Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202CrossRef Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202CrossRef
Zurück zum Zitat Garrote G, Domínguez H, Parajó JC (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh Werkst 59(1–2):53–59CrossRef Garrote G, Domínguez H, Parajó JC (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh Werkst 59(1–2):53–59CrossRef
Zurück zum Zitat Giebeler E (1983) Dimensional stabilization of wood by moisture-heat-pressure treatment. Holz Roh Werkst 41(3):87–94CrossRef Giebeler E (1983) Dimensional stabilization of wood by moisture-heat-pressure treatment. Holz Roh Werkst 41(3):87–94CrossRef
Zurück zum Zitat Hill CAS (2006) Wood modification: Chemical, thermal and other processes. Wiley, Chichester, p 239CrossRef Hill CAS (2006) Wood modification: Chemical, thermal and other processes. Wiley, Chichester, p 239CrossRef
Zurück zum Zitat Hofmann T, Wetzig M, Rétfalvi T, Sieverts T, Bergemann H, Niemz P (2013) Heat-treatment with the vacuum-press dewatering method: chemical properties of the manufactured wood and the condensation water. Eur J Wood Prod 71(1):121–127CrossRef Hofmann T, Wetzig M, Rétfalvi T, Sieverts T, Bergemann H, Niemz P (2013) Heat-treatment with the vacuum-press dewatering method: chemical properties of the manufactured wood and the condensation water. Eur J Wood Prod 71(1):121–127CrossRef
Zurück zum Zitat Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresoruce Technol 102(19):9272–9278CrossRef Ibbett R, Gaddipati S, Davies S, Hill S, Tucker G (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresoruce Technol 102(19):9272–9278CrossRef
Zurück zum Zitat Ishikawa A, Kuroda N, Kato A (2004) In situ measurement of wood moisture content in high-temperature steam. J Wood Sci 50(1):7–14CrossRef Ishikawa A, Kuroda N, Kato A (2004) In situ measurement of wood moisture content in high-temperature steam. J Wood Sci 50(1):7–14CrossRef
Zurück zum Zitat Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Eur J Wood Prod 60(1):1–6CrossRef Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Eur J Wood Prod 60(1):1–6CrossRef
Zurück zum Zitat Karlsson O, Torniainen P, Dagbro O, Granlund K, Moren T (2012) Presence of water-soluble compounds in thermally modified wood: carbohydrates and furfurals. BioResources 7(3):3679–3689 Karlsson O, Torniainen P, Dagbro O, Granlund K, Moren T (2012) Presence of water-soluble compounds in thermally modified wood: carbohydrates and furfurals. BioResources 7(3):3679–3689
Zurück zum Zitat Kol HŞ, Sefil Y (2011) The thermal conductivity of fir and beech wood heat treated at 170, 180, 190, 200, and 212 °C. J Appl Polym Sci 121(4):2473–2480CrossRef Kol HŞ, Sefil Y (2011) The thermal conductivity of fir and beech wood heat treated at 170, 180, 190, 200, and 212 °C. J Appl Polym Sci 121(4):2473–2480CrossRef
Zurück zum Zitat Kotilainen R (2000) Chemical changes in wood during heating at 150–160 °C. PhD thesis, University of Jyväskylä, Finland Kotilainen R (2000) Chemical changes in wood during heating at 150–160 °C. PhD thesis, University of Jyväskylä, Finland
Zurück zum Zitat Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46(1):8–15CrossRef Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46(1):8–15CrossRef
Zurück zum Zitat Kubojima Y, Suzuki Y, Tonosaki M, Ishikawa A (2003) Moisture content of green wood in high temperature water vapor. Holzforschung 57(6):634–638CrossRef Kubojima Y, Suzuki Y, Tonosaki M, Ishikawa A (2003) Moisture content of green wood in high temperature water vapor. Holzforschung 57(6):634–638CrossRef
Zurück zum Zitat Lenth CA, Kamke FA (2001) Equilibrium moisture content of wood in high-temperature pressurized environments. Wood Fiber Sci 33(1):104–118 Lenth CA, Kamke FA (2001) Equilibrium moisture content of wood in high-temperature pressurized environments. Wood Fiber Sci 33(1):104–118
Zurück zum Zitat Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol 98(16):3061–3068CrossRef Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol 98(16):3061–3068CrossRef
Zurück zum Zitat Metsa-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170, 190, 210 and 230 °C. Holz Roh Werkst 64(3):192–197CrossRef Metsa-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170, 190, 210 and 230 °C. Holz Roh Werkst 64(3):192–197CrossRef
Zurück zum Zitat Militz H, Altgen M (2014) Processes and properties of thermally modified wood manufactured in Europe. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials, vol 1158. ACS Symposium Series, vol 1158. American Chemical Society, pp 269–285 Militz H, Altgen M (2014) Processes and properties of thermally modified wood manufactured in Europe. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials, vol 1158. ACS Symposium Series, vol 1158. American Chemical Society, pp 269–285
Zurück zum Zitat Mitchell PH (1988) Irreversible property changes of small Loblolly-pine specimens heated in air, nitrogen, or oxygen. Wood Fiber Sci 20(3):320–335 Mitchell PH (1988) Irreversible property changes of small Loblolly-pine specimens heated in air, nitrogen, or oxygen. Wood Fiber Sci 20(3):320–335
Zurück zum Zitat Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2005) Thermal Modifications in Softwood Studied by FT-IR and UV Resonance Raman Spectroscopies. J Wood Chem Technol 24(1):13–26CrossRef Nuopponen M, Vuorinen T, Jämsä S, Viitaniemi P (2005) Thermal Modifications in Softwood Studied by FT-IR and UV Resonance Raman Spectroscopies. J Wood Chem Technol 24(1):13–26CrossRef
Zurück zum Zitat Obataya E, Higashihara T, Tomita B (2002) Hygroscopicity of heat-treated wood III. Effect of steaming on the hygroscopicity of wood. Mokuzai Gakkaishi 48(5):348–355 Obataya E, Higashihara T, Tomita B (2002) Hygroscopicity of heat-treated wood III. Effect of steaming on the hygroscopicity of wood. Mokuzai Gakkaishi 48(5):348–355
Zurück zum Zitat Popper R, Niemz P, Eberle G (2005) Investigations on the sorption and swelling properties of thermally treated wood. Holz Roh Werkst 63(2):135–148CrossRef Popper R, Niemz P, Eberle G (2005) Investigations on the sorption and swelling properties of thermally treated wood. Holz Roh Werkst 63(2):135–148CrossRef
Zurück zum Zitat Rautkari L, Hill CAS (2014) Effect of initial moisture content on the anti-swelling efficiency of thermally modified Scots pine sapwood treated in a high-pressure reactor under saturated steam. Holzforschung 68(3):323–326CrossRef Rautkari L, Hill CAS (2014) Effect of initial moisture content on the anti-swelling efficiency of thermally modified Scots pine sapwood treated in a high-pressure reactor under saturated steam. Holzforschung 68(3):323–326CrossRef
Zurück zum Zitat Seborg M, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilization of wood. J For Prod Res Soc 3(3):59–67 Seborg M, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilization of wood. J For Prod Res Soc 3(3):59–67
Zurück zum Zitat Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648–654CrossRef Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648–654CrossRef
Zurück zum Zitat Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48(3):413–417CrossRef Stamm AJ (1956) Thermal degradation of wood and cellulose. Ind Eng Chem 48(3):413–417CrossRef
Zurück zum Zitat Stamm AJ, Burr HK, Kline AA (1946) Staybwood—heat-stabilized wood. Ind Eng Chem 38(6):630–634CrossRef Stamm AJ, Burr HK, Kline AA (1946) Staybwood—heat-stabilized wood. Ind Eng Chem 38(6):630–634CrossRef
Zurück zum Zitat Sundqvist B, Karlsson O, Westermark U (2006) Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol 40(7):549–561CrossRef Sundqvist B, Karlsson O, Westermark U (2006) Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci Technol 40(7):549–561CrossRef
Zurück zum Zitat Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63(2):102–111CrossRef Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63(2):102–111CrossRef
Zurück zum Zitat Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56(3):149–153CrossRef Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56(3):149–153CrossRef
Zurück zum Zitat Torniainen P, Dagbro O, Moren T (2011) Thermal modification of birch using saturated and superheated steam. Proceedings of the 7th meeting of the Nordic-Baltic Network in Wodd. Mat Sci Eng (WSE), Oslo, Norway Torniainen P, Dagbro O, Moren T (2011) Thermal modification of birch using saturated and superheated steam. Proceedings of the 7th meeting of the Nordic-Baltic Network in Wodd. Mat Sci Eng (WSE), Oslo, Norway
Zurück zum Zitat Welzbacher C (2010) TMT-interlab-test to establish suitable quality control techniques—structure and first results. The International Research Group on Wood Protection. Doc.-No. IRG/WP 10-40503, Biarritz, France Welzbacher C (2010) TMT-interlab-test to establish suitable quality control techniques—structure and first results. The International Research Group on Wood Protection. Doc.-No. IRG/WP 10-40503, Biarritz, France
Zurück zum Zitat Welzbacher C, Brischke C, Rapp A (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater Sci Eng 2(2):66–76CrossRef Welzbacher C, Brischke C, Rapp A (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater Sci Eng 2(2):66–76CrossRef
Zurück zum Zitat Wikberg H, Maunu S (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohyd Polym 58(4):461–466CrossRef Wikberg H, Maunu S (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohyd Polym 58(4):461–466CrossRef
Zurück zum Zitat Willems W (2009) Novel economic large-scale production technology for high-quality thermally modified wood. Proceedings of the 5th European Conference on Wood Modification, Stockholm, Sweden, pp 31–35 Willems W (2009) Novel economic large-scale production technology for high-quality thermally modified wood. Proceedings of the 5th European Conference on Wood Modification, Stockholm, Sweden, pp 31–35
Zurück zum Zitat Willems W (2014) Hydrostatic pressure and temperature dependence of wood moisture sorption isotherms. Wood Sci Technol 48(3):483–498CrossRef Willems W (2014) Hydrostatic pressure and temperature dependence of wood moisture sorption isotherms. Wood Sci Technol 48(3):483–498CrossRef
Zurück zum Zitat Willems W, Mai C, Militz H (2013) Thermal wood modification chemistry analysed using van Krevelen’s representation. Int Wood Prod J 4(3):166–171CrossRef Willems W, Mai C, Militz H (2013) Thermal wood modification chemistry analysed using van Krevelen’s representation. Int Wood Prod J 4(3):166–171CrossRef
Zurück zum Zitat Willems W, Altgen M, Militz H (2015) Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems. Int Wood Prod J 6(1):21–26CrossRef Willems W, Altgen M, Militz H (2015) Comparison of EMC and durability of heat treated wood from high versus low water vapour pressure reactor systems. Int Wood Prod J 6(1):21–26CrossRef
Zurück zum Zitat Zaman A, Alén R, Kotilainen R (2000) Thermal Behavior of Scots Pine (Pinus sylvestris) and Silver Birch (Betula pendula) at 200°–230°. Wood Fiber Sci 32(2):138–143 Zaman A, Alén R, Kotilainen R (2000) Thermal Behavior of Scots Pine (Pinus sylvestris) and Silver Birch (Betula pendula) at 200°–230°. Wood Fiber Sci 32(2):138–143
Metadaten
Titel
Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system
verfasst von
Michael Altgen
Wim Willems
Holger Militz
Publikationsdatum
15.04.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Wood and Wood Products / Ausgabe 5/2016
Print ISSN: 0018-3768
Elektronische ISSN: 1436-736X
DOI
https://doi.org/10.1007/s00107-016-1045-y

Weitere Artikel der Ausgabe 5/2016

European Journal of Wood and Wood Products 5/2016 Zur Ausgabe