Skip to main content

2017 | OriginalPaper | Buchkapitel

10. Work, Efficiency and Elastic Recovery

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes how speed, age, body mass and gravity affect work and efficiency during locomotion. In adult humans and in children the efficiency increases with running speed up to values well above the maximal efficiency of muscle contractile machinery suggesting elastic recovery. According to the spring-mass model of running, a reciprocal relationship is found between power spent against gravity and step frequency resulting in a lower external power in children; their higher step frequency however involves a greater internal power with the result that mass-specific power and efficiency are about the same as in adults. Similarly, in old subjects, a reduction of the vertical push during the running step causes, as in the youngest, a lower power spent against gravity, but a greater step frequency and internal power. The well known increase in efficiency of animal locomotion with increasing body mass is found to coincide with a decrease of elastic hysteresis in the stretch-shorten cycle during the rebound of running, trotting and hopping animals of different size. An increase in gravity causes a proportional increase of external work done by running humans and expands the range of speeds where the rebound is on-off ground symmetric. In sprint running the average power appears to be sustained by the contractile component at low speeds and, for an appreciable fraction, by elastic recovery at high speeds. The role of contractile component and elastic recoil is described during vertical jumps off both feet of different amplitude and under different simulated gravity values.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander RMN (2002) Tendon elasticity and muscle function. Comp Biochem Physiol A 133:1001–1011 Alexander RMN (2002) Tendon elasticity and muscle function. Comp Biochem Physiol A 133:1001–1011
Zurück zum Zitat Alexander RMN, Jayes AS, Maloiy GMO, Wathuta EM (1981) Allometry of the leg muscles of mammals. J Zool 194:539–552 Alexander RMN, Jayes AS, Maloiy GMO, Wathuta EM (1981) Allometry of the leg muscles of mammals. J Zool 194:539–552
Zurück zum Zitat Asmussen E, Bonde-Petersen F (1974a) Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand 91:385–392CrossRef Asmussen E, Bonde-Petersen F (1974a) Storage of elastic energy in skeletal muscles in man. Acta Physiol Scand 91:385–392CrossRef
Zurück zum Zitat Asmussen E, Bonde-Petersen F (1974b) Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 92:537–545CrossRef Asmussen E, Bonde-Petersen F (1974b) Apparent efficiency and storage of elastic energy in human muscles during exercise. Acta Physiol Scand 92:537–545CrossRef
Zurück zum Zitat Atzler E, Herbst R (1927) Arbeitsphysiologische studien. Pflug Arch ges Physiol 215:291–328CrossRef Atzler E, Herbst R (1927) Arbeitsphysiologische studien. Pflug Arch ges Physiol 215:291–328CrossRef
Zurück zum Zitat Bar-Or O (1987) Réponses physiologiques de l’enfant normal à l’exercice. Médecine du sport chez l’enfant. Masson, Paris, pp 2–63 Bar-Or O (1987) Réponses physiologiques de l’enfant normal à l’exercice. Médecine du sport chez l’enfant. Masson, Paris, pp 2–63
Zurück zum Zitat Bennett MB, Taylor GC (1995) Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378:56–59CrossRef Bennett MB, Taylor GC (1995) Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378:56–59CrossRef
Zurück zum Zitat Biewener AA, Alexander RM, Heglund NC (1981) Elastic energy storage in the hopping of kangaroo rats (Dipodomys spectabilis). J Zool 195:369–383CrossRef Biewener AA, Alexander RM, Heglund NC (1981) Elastic energy storage in the hopping of kangaroo rats (Dipodomys spectabilis). J Zool 195:369–383CrossRef
Zurück zum Zitat Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227CrossRef Blickhan R (1989) The spring-mass model for running and hopping. J Biomech 22:1217–1227CrossRef
Zurück zum Zitat Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol (Lond) 268:467–481CrossRef Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol (Lond) 268:467–481CrossRef
Zurück zum Zitat Cavagna GA, Legramandi MA (2015) Running, hopping and trotting: tuning step frequency to the resonant frequency of the bouncing system favors larger animals. J Exp Biol 218:3276–3283CrossRef Cavagna GA, Legramandi MA (2015) Running, hopping and trotting: tuning step frequency to the resonant frequency of the bouncing system favors larger animals. J Exp Biol 218:3276–3283CrossRef
Zurück zum Zitat Cavagna GA, Komarek L, Mazzoleni S (1971a) The mechanics of sprint running. J Physiol (Lond) 217:709–721CrossRef Cavagna GA, Komarek L, Mazzoleni S (1971a) The mechanics of sprint running. J Physiol (Lond) 217:709–721CrossRef
Zurück zum Zitat Cavagna GA, Komarek L, Citterio G, Margaria R (1971b) Power output of the previously stretched muscle. In: Vredenbregt J, Wartenweiler J (eds) Medicine and sport science, vol 6 (Biomechanics II). Proceedings of the 2nd international seminar on biomechanics, Eindhoven, 1969. Karger, Basel, pp 159–167 Cavagna GA, Komarek L, Citterio G, Margaria R (1971b) Power output of the previously stretched muscle. In: Vredenbregt J, Wartenweiler J (eds) Medicine and sport science, vol 6 (Biomechanics II). Proceedings of the 2nd international seminar on biomechanics, Eindhoven, 1969. Karger, Basel, pp 159–167
Zurück zum Zitat Cavagna GA, Zamboni A, Faraggiana T, Margaria R (1972) Jumping on the moon: power output at different gravity values. Aerosp Med 43:408–414 Cavagna GA, Zamboni A, Faraggiana T, Margaria R (1972) Jumping on the moon: power output at different gravity values. Aerosp Med 43:408–414
Zurück zum Zitat Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Phy-siol (Lond) 262:639–657CrossRef Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Phy-siol (Lond) 262:639–657CrossRef
Zurück zum Zitat Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261 Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261
Zurück zum Zitat Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol (Lond) 399:81–92CrossRef Cavagna GA, Franzetti P, Heglund NC, Willems P (1988) The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol (Lond) 399:81–92CrossRef
Zurück zum Zitat Cavagna GA, Willems PA, Franzetti P, Detrembleur C (1991) The two power limits conditioning step frequency in human running. J Physiol (Lond) 437:95–108 Cavagna GA, Willems PA, Franzetti P, Detrembleur C (1991) The two power limits conditioning step frequency in human running. J Physiol (Lond) 437:95–108
Zurück zum Zitat Cavagna GA, Mantovani M, Willems PA, Musch G (1997) The resonant step frequency in human running. Pflugers Arch 434:678–684CrossRef Cavagna GA, Mantovani M, Willems PA, Musch G (1997) The resonant step frequency in human running. Pflugers Arch 434:678–684CrossRef
Zurück zum Zitat Cavagna GA, Heglund NC, Willems PA (2005) Effect of an increase in gravity on the power output and the rebound of the body in human running. J Exp Biol 208:2333–2346CrossRef Cavagna GA, Heglund NC, Willems PA (2005) Effect of an increase in gravity on the power output and the rebound of the body in human running. J Exp Biol 208:2333–2346CrossRef
Zurück zum Zitat Cavagna GA, Legramandi MA, Peyré-Tartaruga LA (2008) Old men running: mechanical work and elastic bounce. P Roy Soc Lond B Bio 275:411–418CrossRef Cavagna GA, Legramandi MA, Peyré-Tartaruga LA (2008) Old men running: mechanical work and elastic bounce. P Roy Soc Lond B Bio 275:411–418CrossRef
Zurück zum Zitat Chang YH, Huang HW, Hamerski CM, Kram R (2000) The independent effects of gravity and inertia on running mechanics. J Exp Biol 203:229–238 Chang YH, Huang HW, Hamerski CM, Kram R (2000) The independent effects of gravity and inertia on running mechanics. J Exp Biol 203:229–238
Zurück zum Zitat Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197 Close RI (1972) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197
Zurück zum Zitat Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K (1984) Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol 56:628–634 Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K (1984) Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol 56:628–634
Zurück zum Zitat Cotes JE, Meade F (1960) The energy expenditure and mechanical energy demand in walking. Ergonomics 3:97–119CrossRef Cotes JE, Meade F (1960) The energy expenditure and mechanical energy demand in walking. Ergonomics 3:97–119CrossRef
Zurück zum Zitat Dickinson S (1929) The efficiency of bicycle-pedalling, as affected by speed and load. J Physiol (Lond) 67:242–255CrossRef Dickinson S (1929) The efficiency of bicycle-pedalling, as affected by speed and load. J Physiol (Lond) 67:242–255CrossRef
Zurück zum Zitat Dill DB (1965) Oxygen used in horizontal and grade walking and running on the treadmill. J Appl Physiol 20:19–22 Dill DB (1965) Oxygen used in horizontal and grade walking and running on the treadmill. J Appl Physiol 20:19–22
Zurück zum Zitat Doherty TJ (2003) Aging and sarcopenia. J Appl Physiol 95:1717–1727CrossRef Doherty TJ (2003) Aging and sarcopenia. J Appl Physiol 95:1717–1727CrossRef
Zurück zum Zitat Du Bois-Reymond R (1925) Der Luftwiederstand des menschlichen Korpers. Pflugers Arch ges Physiol 208:445–453CrossRef Du Bois-Reymond R (1925) Der Luftwiederstand des menschlichen Korpers. Pflugers Arch ges Physiol 208:445–453CrossRef
Zurück zum Zitat Evans SL, Davy KP, Stevenson ET, Seals DR (1995) Physiological determinants of 10-km performance in highly trained female runners of different ages. J Appl Physiol 78:1931–1941 Evans SL, Davy KP, Stevenson ET, Seals DR (1995) Physiological determinants of 10-km performance in highly trained female runners of different ages. J Appl Physiol 78:1931–1941
Zurück zum Zitat Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86 Farley CT, Glasheen J, McMahon TA (1993) Running springs: speed and animal size. J Exp Biol 185:71–86
Zurück zum Zitat Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:582–611 Fenn WO (1930a) Frictional and kinetic factors in the work of sprint running. Am J Physiol 92:582–611
Zurück zum Zitat Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462 Fenn WO (1930b) Work against gravity and work due to velocity changes in running. Am J Physiol 93:433–462
Zurück zum Zitat Heglund NC, Fedak MA, Taylor CR, Cavagna GA (1982) Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J Exp Biol 97:57–66 Heglund NC, Fedak MA, Taylor CR, Cavagna GA (1982) Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. J Exp Biol 97:57–66
Zurück zum Zitat Hill AV (1927) The air-resistance to a runner. P Roy Soc Lond B Bio 102:380–385CrossRef Hill AV (1927) The air-resistance to a runner. P Roy Soc Lond B Bio 102:380–385CrossRef
Zurück zum Zitat Hochmuth S (1968) Biomechanische prinzipien. In: Wartenweiler J, Jokl E, Hebbelinck M (eds) Medicine and sport science, vol 2 (Biomechanics). Proceedings of the 1st international seminary on biomechanics, Zurich, Aug 1967. Karger, Basel, pp 155–160 Hochmuth S (1968) Biomechanische prinzipien. In: Wartenweiler J, Jokl E, Hebbelinck M (eds) Medicine and sport science, vol 2 (Biomechanics). Proceedings of the 1st international seminary on biomechanics, Zurich, Aug 1967. Karger, Basel, pp 155–160
Zurück zum Zitat Homsher E, Mommaerts WFHM, Ricchiuti NV, Wallner A (1972) Activation heat, activation metabolism and tension related heat in frog semitendinosus muscles. J Physiol (Lond) 220:601–625CrossRef Homsher E, Mommaerts WFHM, Ricchiuti NV, Wallner A (1972) Activation heat, activation metabolism and tension related heat in frog semitendinosus muscles. J Physiol (Lond) 220:601–625CrossRef
Zurück zum Zitat Karamanidis K, Arampatzis A (2005) Mechanical and morphological properties of different muscle–tendon units in the lower extremity and running mechanics: effect of aging and physical activity. J Exp Biol 208:3907–3923CrossRef Karamanidis K, Arampatzis A (2005) Mechanical and morphological properties of different muscle–tendon units in the lower extremity and running mechanics: effect of aging and physical activity. J Exp Biol 208:3907–3923CrossRef
Zurück zum Zitat Ker R (1981) Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 93:283–302 Ker R (1981) Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 93:283–302
Zurück zum Zitat Legramandi MA, Schepens B, Cavagna GA (2013) Running humans attain optimal elastic bounce in their teens. Sci Rep 3:1310CrossRef Legramandi MA, Schepens B, Cavagna GA (2013) Running humans attain optimal elastic bounce in their teens. Sci Rep 3:1310CrossRef
Zurück zum Zitat Lloyd BB, Zacks RM (1972) The mechanical efficiency of treadmill running against a horizontal impeding force. J Physiol (Lond) 223:355–373CrossRef Lloyd BB, Zacks RM (1972) The mechanical efficiency of treadmill running against a horizontal impeding force. J Physiol (Lond) 223:355–373CrossRef
Zurück zum Zitat Maloiy GMO, Alexander RMN, Njau R, Jayes AS (1979) Allometry of the legs of running birds. J Zool 187:161–167 Maloiy GMO, Alexander RMN, Njau R, Jayes AS (1979) Allometry of the legs of running birds. J Zool 187:161–167
Zurück zum Zitat Marey M, Demeny MG (1885) Locomotion humaine, mecanisme du saut. Comptes Rendus Hebdomadaires des seances de I’Academie des Sciences (Paris), 101:489–494 Marey M, Demeny MG (1885) Locomotion humaine, mecanisme du saut. Comptes Rendus Hebdomadaires des seances de I’Academie des Sciences (Paris), 101:489–494
Zurück zum Zitat Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varie velocita’ ed inclinazioni del terreno. Atti Accad Naz Lincei Memorie 7299–7368 Margaria R (1938) Sulla fisiologia e specialmente sul consumo energetico della marcia e della corsa a varie velocita’ ed inclinazioni del terreno. Atti Accad Naz Lincei Memorie 7299–7368
Zurück zum Zitat Margaria R, Cavagna GA, Saibene FP (1963) Possibilita’ di sfruttamento dell’elasticita’ del muscolo contratto durante l’esercizio muscolare. Boll Soc Ital Biol Sper 39:1815–1816 Margaria R, Cavagna GA, Saibene FP (1963) Possibilita’ di sfruttamento dell’elasticita’ del muscolo contratto durante l’esercizio muscolare. Boll Soc Ital Biol Sper 39:1815–1816
Zurück zum Zitat Maykranz D, Seyfarth A (2014) Compliant ankle function results in landing-take off asymmetry in legged locomotion. J Theor Biol 349:44–49MathSciNetCrossRef Maykranz D, Seyfarth A (2014) Compliant ankle function results in landing-take off asymmetry in legged locomotion. J Theor Biol 349:44–49MathSciNetCrossRef
Zurück zum Zitat McGowan CP, Skinner J, Biewener AA (2008) Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings. J Anat 212:153–163CrossRef McGowan CP, Skinner J, Biewener AA (2008) Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings. J Anat 212:153–163CrossRef
Zurück zum Zitat McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23:65–78CrossRef McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23:65–78CrossRef
Zurück zum Zitat Minetti AE (1998) A model equation for the prediction of mechanical internal work of terrestrial locomotion. J Biomech 31:463–468CrossRef Minetti AE (1998) A model equation for the prediction of mechanical internal work of terrestrial locomotion. J Biomech 31:463–468CrossRef
Zurück zum Zitat Nardello F, Ardigo’ LP, Minetti AE (2011) Measured and predicted mechanical internal work in human locomotion. Hum Mov Sci 30:90–104 Nardello F, Ardigo’ LP, Minetti AE (2011) Measured and predicted mechanical internal work in human locomotion. Hum Mov Sci 30:90–104
Zurück zum Zitat Pavei G, Minetti AE (2016) Hopping locomotion at different gravity: metabolism and mechanics in humans. J Appl Physiol 120:1223–1229CrossRef Pavei G, Minetti AE (2016) Hopping locomotion at different gravity: metabolism and mechanics in humans. J Appl Physiol 120:1223–1229CrossRef
Zurück zum Zitat Pavei G, Biancardi CM, Minetti AE (2015) Skipping vs. running as the bipedal gait of choice in hypogravity. J Appl Physiol 119:93–100CrossRef Pavei G, Biancardi CM, Minetti AE (2015) Skipping vs. running as the bipedal gait of choice in hypogravity. J Appl Physiol 119:93–100CrossRef
Zurück zum Zitat Pollock CM, Shadwick RE (1994) Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am J Physiol 266:R1022–R1031
 Pollock CM, Shadwick RE (1994) Allometry of muscle, tendon, and elastic energy storage capacity in mammals. Am J Physiol 266:R1022–R1031

Zurück zum Zitat Pugh LGCE (1971) The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol (Lond) 213:255–276
 Pugh LGCE (1971) The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. J Physiol (Lond) 213:255–276

Zurück zum Zitat Ralston HJ (1958) Energy-speed relation and optimal speed during level walking. Int Z Angew Physiol 17:277–283 Ralston HJ (1958) Energy-speed relation and optimal speed during level walking. Int Z Angew Physiol 17:277–283
Zurück zum Zitat Schepens B, Willems PA, Cavagna GA (1998) The mechanics of running in children. J Physiol 509:927–940
 Schepens B, Willems PA, Cavagna GA (1998) The mechanics of running in children. J Physiol 509:927–940

Zurück zum Zitat Schepens B, Willems PA, Cavagna GA, Heglund NC (2001) Mechanical power and efficiency in running children. Pflugers Arch 442:107–116CrossRef Schepens B, Willems PA, Cavagna GA, Heglund NC (2001) Mechanical power and efficiency in running children. Pflugers Arch 442:107–116CrossRef
Zurück zum Zitat Seyfarth A, Geyer H, Günther M, Blickhan R (2002) A movement criterion for running. J Biomech 35:649–655CrossRef Seyfarth A, Geyer H, Günther M, Blickhan R (2002) A movement criterion for running. J Biomech 35:649–655CrossRef
Zurück zum Zitat Thys H, Faraggiana T, Margaria R (1972) Utilization of muscle elasticity in exercise. J Appl Physiol 32:491–494 Thys H, Faraggiana T, Margaria R (1972) Utilization of muscle elasticity in exercise. J Appl Physiol 32:491–494
Zurück zum Zitat Thys H, Cavagna GA, Margaria R (1975) The role played by elasticity in an exercise involving movements of small amplitude. Pflugers Arch 354:281–286CrossRef Thys H, Cavagna GA, Margaria R (1975) The role played by elasticity in an exercise involving movements of small amplitude. Pflugers Arch 354:281–286CrossRef
Zurück zum Zitat Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393 Willems PA, Cavagna GA, Heglund NC (1995) External, internal and total work in human locomotion. J Exp Biol 198:379–393
Zurück zum Zitat Zacks RM (1973) The mechanical efficiencies of running and bicycling against a horizontal impeding force. Int Z Angew Physiol 31:249–258 Zacks RM (1973) The mechanical efficiencies of running and bicycling against a horizontal impeding force. Int Z Angew Physiol 31:249–258
Metadaten
Titel
Work, Efficiency and Elastic Recovery
verfasst von
Giovanni Cavagna
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-49980-2_10

Neuer Inhalt