Skip to main content

2025 | OriginalPaper | Buchkapitel

Would You Trust an AI Doctor? Building Reliable Medical Predictions with Kernel Dropout Uncertainty

verfasst von : Ubaid Azam, Imran Razzak, Shelly Vishwakarma, Hakim Hacid, Dell Zhang, Shoaib Jameel

Erschienen in: Web Information Systems Engineering – WISE 2024

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The growing capabilities of AI raise questions about their trustworthiness in healthcare, particularly due to opaque decision-making and limited data availability. This paper proposes a novel approach to address these challenges, introducing a Bayesian Monte Carlo Dropout model with kernel modelling. Our model is designed to enhance reliability on small medical datasets, a crucial barrier to the wider adoption of AI in healthcare. This model leverages existing language models for improved effectiveness and seamlessly integrates with current workflows. We demonstrate significant improvements in reliability, even with limited data, offering a promising step towards building trust in AI-driven medical predictions and unlocking its potential to improve patient care.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Afzal, M., Hussain, J., Abbas, A., Maqbool, H.: Multi-class clinical text annotation and classification using BERT-based active learning. SSRN 4081033 (2022) Afzal, M., Hussain, J., Abbas, A., Maqbool, H.: Multi-class clinical text annotation and classification using BERT-based active learning. SSRN 4081033 (2022)
2.
Zurück zum Zitat Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Generalizing unsupervised anomaly detection: towards unbiased pathology screening. In: Medical Imaging with Deep Learning, pp. 39–52. PMLR (2024) Bercea, C.I., Wiestler, B., Rueckert, D., Schnabel, J.A.: Generalizing unsupervised anomaly detection: towards unbiased pathology screening. In: Medical Imaging with Deep Learning, pp. 39–52. PMLR (2024)
3.
Zurück zum Zitat Chanda, D., Onim, M.S.H., Nyeem, H., Ovi, T.B., Naba, S.S.: DcensNet: a new deep convolutional ensemble network for skin cancer classification. Biomed. Signal Process. Control 89, 105757 (2024)CrossRef Chanda, D., Onim, M.S.H., Nyeem, H., Ovi, T.B., Naba, S.S.: DcensNet: a new deep convolutional ensemble network for skin cancer classification. Biomed. Signal Process. Control 89, 105757 (2024)CrossRef
4.
Zurück zum Zitat Damianou, A., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215. PMLR (2013) Damianou, A., Lawrence, N.D.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215. PMLR (2013)
5.
Zurück zum Zitat Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018) Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805 (2018)
6.
Zurück zum Zitat Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016) Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)
7.
Zurück zum Zitat Gao, S., et al.: Limitations of transformers on clinical text classification. IEEE J. Biomed. Health Inform. 25(9), 3596–3607 (2021)CrossRef Gao, S., et al.: Limitations of transformers on clinical text classification. IEEE J. Biomed. Health Inform. 25(9), 3596–3607 (2021)CrossRef
8.
Zurück zum Zitat Griffiths, T., Jordan, M., Tenenbaum, J., Blei, D.: Hierarchical topic models and the nested Chinese restaurant process. Adv. Neural Inf. Process. Syst. 16 (2003) Griffiths, T., Jordan, M., Tenenbaum, J., Blei, D.: Hierarchical topic models and the nested Chinese restaurant process. Adv. Neural Inf. Process. Syst. 16 (2003)
9.
Zurück zum Zitat Joshi, M., Pezzotti, N., Browne, J.T.: Human–AI relationship in healthcare. In: Explainable AI in Healthcare, pp. 1–22. Chapman and Hall/CRC (2024) Joshi, M., Pezzotti, N., Browne, J.T.: Human–AI relationship in healthcare. In: Explainable AI in Healthcare, pp. 1–22. Chapman and Hall/CRC (2024)
10.
Zurück zum Zitat Kong, M., Huang, Z., Kuang, K., Zhu, Q., Wu, F.: TranSQ: transformer-based semantic query for medical report generation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 610–620. Springer (2022) Kong, M., Huang, Z., Kuang, K., Zhu, Q., Wu, F.: TranSQ: transformer-based semantic query for medical report generation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 610–620. Springer (2022)
11.
Zurück zum Zitat Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019) Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: a lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:​1909.​11942 (2019)
12.
Zurück zum Zitat Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)MathSciNetCrossRef Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)MathSciNetCrossRef
15.
Zurück zum Zitat Longoni, C., Bonezzi, A., Morewedge, C.K.: Resistance to medical artificial intelligence. J. Consum. Res. 46(4), 629–650 (2019)CrossRef Longoni, C., Bonezzi, A., Morewedge, C.K.: Resistance to medical artificial intelligence. J. Consum. Res. 46(4), 629–650 (2019)CrossRef
16.
Zurück zum Zitat Moore, W., Frye, S.: Review of HIPAA, part 2: limitations, rights, violations, and role for the imaging technologist. J. Nucl. Med. Technol. 48(1), 17–23 (2020)CrossRef Moore, W., Frye, S.: Review of HIPAA, part 2: limitations, rights, violations, and role for the imaging technologist. J. Nucl. Med. Technol. 48(1), 17–23 (2020)CrossRef
17.
Zurück zum Zitat Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. arXiv preprint arXiv:1906.05474 (2019) Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing: an evaluation of BERT and ELMo on ten benchmarking datasets. arXiv preprint arXiv:​1906.​05474 (2019)
18.
Zurück zum Zitat Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can. J. Cardiol. 38(2), 204–213 (2022)CrossRef Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can. J. Cardiol. 38(2), 204–213 (2022)CrossRef
19.
Zurück zum Zitat Rafi, T.H., Shubair, R.M., Farhan, F., Hoque, M.Z., Quayyum, F.M.: Recent advances in computer-aided medical diagnosis using machine learning algorithms with optimization techniques. IEEE Access 9, 137847–137868 (2021)CrossRef Rafi, T.H., Shubair, R.M., Farhan, F., Hoque, M.Z., Quayyum, F.M.: Recent advances in computer-aided medical diagnosis using machine learning algorithms with optimization techniques. IEEE Access 9, 137847–137868 (2021)CrossRef
20.
Zurück zum Zitat Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019) Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:​1910.​01108 (2019)
21.
Zurück zum Zitat Shelmanov, A., Tsymbalov, E., Puzyrev, D., Fedyanin, K., Panchenko, A., Panov, M.: How certain is your transformer? In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1833–1840 (2021) Shelmanov, A., Tsymbalov, E., Puzyrev, D., Fedyanin, K., Panchenko, A., Panov, M.: How certain is your transformer? In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 1833–1840 (2021)
22.
Zurück zum Zitat Singh, A., Guntu, M., Bhimireddy, A.R., Gichoya, J.W., Purkayastha, S.: Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes. arXiv preprint arXiv:2003.07507 (2020) Singh, A., Guntu, M., Bhimireddy, A.R., Gichoya, J.W., Purkayastha, S.: Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes. arXiv preprint arXiv:​2003.​07507 (2020)
23.
Zurück zum Zitat Spasic, I., Nenadic, G., et al.: Clinical text data in machine learning: systematic review. JMIR Med. Inform. 8(3), e17984 (2020)CrossRef Spasic, I., Nenadic, G., et al.: Clinical text data in machine learning: systematic review. JMIR Med. Inform. 8(3), e17984 (2020)CrossRef
24.
Zurück zum Zitat Tanneru, S.H., Agarwal, C., Lakkaraju, H.: Quantifying uncertainty in natural language explanations of large language models. arXiv preprint arXiv:2311.03533 (2023) Tanneru, S.H., Agarwal, C., Lakkaraju, H.: Quantifying uncertainty in natural language explanations of large language models. arXiv preprint arXiv:​2311.​03533 (2023)
25.
Zurück zum Zitat Wang, G., et al.: Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nat. Med. 29(10), 2633–2642 (2023)CrossRef Wang, G., et al.: Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial. Nat. Med. 29(10), 2633–2642 (2023)CrossRef
26.
Zurück zum Zitat Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32 (2019) Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 32 (2019)
27.
Zurück zum Zitat Yao, L., Jin, Z., Mao, C., Zhang, Y., Luo, Y.: Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J. Am. Med. Inform. Assoc. 26(12), 1632–1636 (2019)CrossRef Yao, L., Jin, Z., Mao, C., Zhang, Y., Luo, Y.: Traditional Chinese medicine clinical records classification with BERT and domain specific corpora. J. Am. Med. Inform. Assoc. 26(12), 1632–1636 (2019)CrossRef
28.
Zurück zum Zitat Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: International Conference on Artificial Intelligence in Medicine, pp. 114–123. Springer (2021) Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: International Conference on Artificial Intelligence in Medicine, pp. 114–123. Springer (2021)
29.
Zurück zum Zitat Young, A.L., et al.: Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat. Rev. Neurosci. 25(2), 1–20 (2024) Young, A.L., et al.: Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat. Rev. Neurosci. 25(2), 1–20 (2024)
30.
Zurück zum Zitat Zhu, R., Tu, X., Huang, J.X.: Utilizing BERT for biomedical and clinical text mining. In: Data Analytics in Biomedical Engineering and Healthcare, pp. 73–103. Elsevier (2021) Zhu, R., Tu, X., Huang, J.X.: Utilizing BERT for biomedical and clinical text mining. In: Data Analytics in Biomedical Engineering and Healthcare, pp. 73–103. Elsevier (2021)
Metadaten
Titel
Would You Trust an AI Doctor? Building Reliable Medical Predictions with Kernel Dropout Uncertainty
verfasst von
Ubaid Azam
Imran Razzak
Shelly Vishwakarma
Hakim Hacid
Dell Zhang
Shoaib Jameel
Copyright-Jahr
2025
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-96-0573-6_24