Skip to main content

2021 | OriginalPaper | Buchkapitel

X-ray Methods for Structural Characterization of III-V Nanowires: From an ex-situ Ensemble Average to Time-resolved Nano-diffraction

verfasst von : Ludwig Feigl, Philipp Schroth

Erschienen in: Fundamental Properties of Semiconductor Nanowires

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding and controlling the highly dynamical self-catalyzed vapor–liquid–solid growth of GaAs nanowires remains being a challenge. In order to gain deeper insight into these processes, our approach is the analysis by in-situ synchrotron X-ray diffraction during MBE-growth. This allows recording time-resolved information about crystal structure and shape of the nanowires. Within this chapter, we give a detailed overview of how this goal can be achieved. Starting from crucial basics about the crystal structure of GaAs nanowires and the signal obtained by X-ray diffraction, we describe how an asymmetric three-dimensional mapping of the reciprocal space is possible using a fixed angle of incidence—a geometry that is highly advantageous for time-resolved in-situ characterization. Additionally, the experimental setup is introduced and accompanying challenges are discussed. Applying the described methods, we were able to directly observe and distinguish several different effects during the growth of GaAs nanowires as well as of (In,Ga)As core-shell heterostructures. Firstly, an increasing transition probability from wurtzite to zinc-blende is observed during the course of growth, which is converted into the corresponding energy difference of the nucleation barriers of both phases. Secondly, analyzing the shape of the nanowires during growth, the evolution of the Ga-droplet on top of the nanowire was derived and the contributions of facet growth and tapering to the total radial growth were distinguished. Additionally, the effect of interfacial strain during the epitaxial growth of an (In,Ga)As shell layer around GaAs nanowires is monitored by X-ray diffraction and described by applying basic model representations. Finally, most recent results on nanowire arrays grown on Si substrates patterned by electron beam lithography are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Xiang, L. Wei, H. Yongjie, W. Yue, H. Yan, C.M. Lieber, Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006). MayCrossRef J. Xiang, L. Wei, H. Yongjie, W. Yue, H. Yan, C.M. Lieber, Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441(7092), 489–493 (2006). MayCrossRef
2.
Zurück zum Zitat O. Hayden, R. Agarwal, W. Lu, Semiconductor nanowire devices. Nano Today, 3(5–6), 12–22 (2008) O. Hayden, R. Agarwal, W. Lu, Semiconductor nanowire devices. Nano Today, 3(5–6), 12–22 (2008)
3.
Zurück zum Zitat C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011) C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)
4.
Zurück zum Zitat N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, 25th anniversary article: semiconductor nanowires synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014) N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, 25th anniversary article: semiconductor nanowires synthesis, characterization, and applications. Adv. Mater. 26(14), 2137–2184 (2014)
5.
Zurück zum Zitat T.E. Kazior, Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems. Philos. Trans. Roy. Soc. A—Math. Phys. Eng. Sci. 372(2012), (2014) T.E. Kazior, Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems. Philos. Trans. Roy. Soc. A—Math. Phys. Eng. Sci. 372(2012), (2014)
6.
Zurück zum Zitat T. Bryllert. L.E. Wernersson, L.E. Froberg, L. Samuelson, Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 27(5), 323–325 (2006) T. Bryllert. L.E. Wernersson, L.E. Froberg, L. Samuelson, Vertical high-mobility wrap-gated InAs nanowire transistor. IEEE Electron Device Lett. 27(5), 323–325 (2006)
7.
Zurück zum Zitat K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, T. Fukui, III–V nanowires on Si substrate: selective-area growth and device applications. IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011) K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, T. Fukui, III–V nanowires on Si substrate: selective-area growth and device applications. IEEE J. Sel. Top. Quantum Electron. 17(4), 1112–1129 (2011)
8.
Zurück zum Zitat K. Tomioka, M. Yoshimura, T. Fukui, A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410), 189–192 (2012). AugustCrossRef K. Tomioka, M. Yoshimura, T. Fukui, A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410), 189–192 (2012). AugustCrossRef
9.
Zurück zum Zitat K. Tomioka, T. Fukui, Recent progress in integration of III–V nanowire transistors on Si substrate by selective-area growth. J. Phys. D-Appl. Phys. 47(39, SI), (2014) K. Tomioka, T. Fukui, Recent progress in integration of III–V nanowire transistors on Si substrate by selective-area growth. J. Phys. D-Appl. Phys. 47(39, SI), (2014)
10.
Zurück zum Zitat X. Miao, K. Chabak, C. Zhang, P.K. Mohseni, D. Walker, Jr., X. Li, High-speed planar GaAs nanowire arrays with f(max) > 75 GHz by wafer-scale bottom-up growth. Nano Lett. 15(5), 2780–2786 (2015) X. Miao, K. Chabak, C. Zhang, P.K. Mohseni, D. Walker, Jr., X. Li, High-speed planar GaAs nanowire arrays with f(max) > 75 GHz by wafer-scale bottom-up growth. Nano Lett. 15(5), 2780–2786 (2015)
11.
Zurück zum Zitat Y. Xiangfeng Duan, R.A. Huang, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003). JanuaryCrossRef Y. Xiangfeng Duan, R.A. Huang, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003). JanuaryCrossRef
12.
Zurück zum Zitat K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, T. Fukui, GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10(5), 1639–1644 (2010) K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, T. Fukui, GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 10(5), 1639–1644 (2010)
13.
Zurück zum Zitat R. Chen, T.-T.D. Tran, K.W. Ng, W.S. Ko, L.C. Chuang, F.G. Sedgwick, C. Chang-Hasnain, Nanolasers grown on silicon. Nat. Photonics 5(3), 170–175 (2011) R. Chen, T.-T.D. Tran, K.W. Ng, W.S. Ko, L.C. Chuang, F.G. Sedgwick, C. Chang-Hasnain, Nanolasers grown on silicon. Nat. Photonics 5(3), 170–175 (2011)
14.
Zurück zum Zitat M.E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M.B. Bavinck, M.A. Verheijen, E.P.A.M. Bakkers, L.P. Kouwenhoven, V. Zwiller, Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012) M.E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M.B. Bavinck, M.A. Verheijen, E.P.A.M. Bakkers, L.P. Kouwenhoven, V. Zwiller, Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012)
15.
Zurück zum Zitat D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan, C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7(12), 963–968 (2013) D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H.H. Tan, C. Jagadish, Optically pumped room-temperature GaAs nanowire lasers. Nat. Photonics 7(12), 963–968 (2013)
16.
Zurück zum Zitat E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, L. Geelhaar, Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett. 14(5), 2604–2609 (2014) E. Dimakis, U. Jahn, M. Ramsteiner, A. Tahraoui, J. Grandal, X. Kong, O. Marquardt, A. Trampert, H. Riechert, L. Geelhaar, Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett. 14(5), 2604–2609 (2014)
17.
Zurück zum Zitat R. Chen, K.W. Ng, W.S. Ko, D. Parekh, F. Lu, T.-T.D. Tran, K. Li, C. Chang-Hasnain, Nanophotonic integrated circuits from nanoresonators grown on silicon. Nat. Commun. 5 (2014) R. Chen, K.W. Ng, W.S. Ko, D. Parekh, F. Lu, T.-T.D. Tran, K. Li, C. Chang-Hasnain, Nanophotonic integrated circuits from nanoresonators grown on silicon. Nat. Commun. 5 (2014)
18.
Zurück zum Zitat B. Tian, X. Zheng, T.J. Kempa, Y. Fang, Yu. Nanfang, Yu. Guihua, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007). OctoberCrossRef B. Tian, X. Zheng, T.J. Kempa, Y. Fang, Yu. Nanfang, Yu. Guihua, J. Huang, C.M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164), 885–889 (2007). OctoberCrossRef
19.
Zurück zum Zitat C. Colombo, M. Heiss, M. Graetzel, A. Fontcuberta i Morral. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17) (2009) C. Colombo, M. Heiss, M. Graetzel, A. Fontcuberta i Morral. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 94(17) (2009)
20.
Zurück zum Zitat P. Krogstrup, H.I. Jorgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A. Fontcuberta i Morral, Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 7(4), 306–310 (2013) P. Krogstrup, H.I. Jorgensen, M. Heiss, O. Demichel, J.V. Holm, M. Aagesen, J. Nygard, A. Fontcuberta i Morral, Single-nanowire solar cells beyond the Shockley-Queisser limit. Nat. Photonics 7(4), 306–310 (2013)
21.
Zurück zum Zitat M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorqui, G. Tuetuencueoglu, F. Matteini, D. Rueffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Llado, A. Fontcuberta i Morral, III–V nanowire arrays: growth and light interaction. Nanotechnology 25(1, SI) (2014) M. Heiss, E. Russo-Averchi, A. Dalmau-Mallorqui, G. Tuetuencueoglu, F. Matteini, D. Rueffer, S. Conesa-Boj, O. Demichel, E. Alarcon-Llado, A. Fontcuberta i Morral, III–V nanowire arrays: growth and light interaction. Nanotechnology 25(1, SI) (2014)
22.
Zurück zum Zitat G. Otnes, M.T. Borgstrom, Towards high efficiency nanowire solar cells. Nano Today 12, 31–45 (2017) G. Otnes, M.T. Borgstrom, Towards high efficiency nanowire solar cells. Nano Today 12, 31–45 (2017)
23.
Zurück zum Zitat J. Cartwright, Qubit in a nanowire. Nat. News (2010) J. Cartwright, Qubit in a nanowire. Nat. News (2010)
24.
Zurück zum Zitat V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336(6084), 1003–1007 (2012)CrossRef V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336(6084), 1003–1007 (2012)CrossRef
25.
Zurück zum Zitat S. Gazibegovic, D. Car, H. Zhang, S.C. Balk, J.A. Logan, M.W.A. de Moor, M.C. Cassidy, R. Schmits, D. Xu, G. Wang, P. Krogstrup, R.L.M. Op het Veld, K. Zuo, Y. Vos, J. Shen, D. Bouman, B.S. Hojaei, D. Pennachio, J.S. Lee, P.J. van Veldhoven, S. Koelling, M.A. Verheijen, L.P. Kouwenhoven, C.J. Palmstrom, E.P.A.M. Bakkers, Epitaxy of advanced nanowire quantum devices. Nature 548(7668), 434+ (2017) S. Gazibegovic, D. Car, H. Zhang, S.C. Balk, J.A. Logan, M.W.A. de Moor, M.C. Cassidy, R. Schmits, D. Xu, G. Wang, P. Krogstrup, R.L.M. Op het Veld, K. Zuo, Y. Vos, J. Shen, D. Bouman, B.S. Hojaei, D. Pennachio, J.S. Lee, P.J. van Veldhoven, S. Koelling, M.A. Verheijen, L.P. Kouwenhoven, C.J. Palmstrom, E.P.A.M. Bakkers, Epitaxy of advanced nanowire quantum devices. Nature 548(7668), 434+ (2017)
26.
Zurück zum Zitat A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008) A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008)
27.
Zurück zum Zitat Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001). AugustCrossRef Y. Cui, Q. Wei, H. Park, C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001). AugustCrossRef
28.
Zurück zum Zitat E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007). FebruaryCrossRef E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(7127), 519–522 (2007). FebruaryCrossRef
29.
Zurück zum Zitat P.K. Sahoo, R. Janissen, M.P. Monteiro, A. Cavalli, D.M. Murillo, M.V. Merfa, C.L. Cesar, H.F. Carvalho, A.A. de Souza, E.P.A.M. Bakkers, M.A. Cotta, Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell bacteria and biofilm stability. Nano Lett. 16(7), 4656–4664 (2016) P.K. Sahoo, R. Janissen, M.P. Monteiro, A. Cavalli, D.M. Murillo, M.V. Merfa, C.L. Cesar, H.F. Carvalho, A.A. de Souza, E.P.A.M. Bakkers, M.A. Cotta, Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell bacteria and biofilm stability. Nano Lett. 16(7), 4656–4664 (2016)
30.
Zurück zum Zitat P. Schroth. Growth of self-catalyzed GaAs nanowires using molecular-beam-epitaxy and structural characterization by in-situ X-ray diffraction. Dissertation, Universität Siegen, 2016 P. Schroth. Growth of self-catalyzed GaAs nanowires using molecular-beam-epitaxy and structural characterization by in-situ X-ray diffraction. Dissertation, Universität Siegen, 2016
31.
Zurück zum Zitat A. Biermanns, E. Dimakis, A. Davydok, T. Sasaki, L. Geelhaar, M. Takahasi, U. Pietsch, Role of liquid indium in the structural purity of wurtzite inas nanowires that grow on si(111). Nano Letters 14(12), 6878–6883 (2014)CrossRef A. Biermanns, E. Dimakis, A. Davydok, T. Sasaki, L. Geelhaar, M. Takahasi, U. Pietsch, Role of liquid indium in the structural purity of wurtzite inas nanowires that grow on si(111). Nano Letters 14(12), 6878–6883 (2014)CrossRef
32.
Zurück zum Zitat M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31(7R), 2061 (1992). JulyCrossRef M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31(7R), 2061 (1992). JulyCrossRef
33.
Zurück zum Zitat G.E. Cirlin, V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev, Y.B. Samsonenko, A.D. Bouravleuv, J.C. Harmand, F. Glas, Critical diameters and temperature domains for mbe growth of iii–v nanowires on lattice mismatched substrates. Physica Status Solidi (RRL)—Rapid Research Letters 3(4), 112–114 (2009) G.E. Cirlin, V.G. Dubrovskii, I.P. Soshnikov, N.V. Sibirev, Y.B. Samsonenko, A.D. Bouravleuv, J.C. Harmand, F. Glas, Critical diameters and temperature domains for mbe growth of iii–v nanowires on lattice mismatched substrates. Physica Status Solidi (RRL)—Rapid Research Letters 3(4), 112–114 (2009)
34.
Zurück zum Zitat D.S. Oliveira, L.H.G. Tizei, D. Ugarte, M.A. Cotta, Spontaneous periodic diameter oscillations in inp nanowires: the role of interface instabilities. Nano Lett. 13(1), 9–13 (2013). PMID: 23205668CrossRef D.S. Oliveira, L.H.G. Tizei, D. Ugarte, M.A. Cotta, Spontaneous periodic diameter oscillations in inp nanowires: the role of interface instabilities. Nano Lett. 13(1), 9–13 (2013). PMID: 23205668CrossRef
35.
Zurück zum Zitat S. Breuer, Molecular beam epitaxy of GaAs nanowires and their suitability for optoelectronic applications. Dissertation, Humboldt-Universität zu Berlin, 2011 S. Breuer, Molecular beam epitaxy of GaAs nanowires and their suitability for optoelectronic applications. Dissertation, Humboldt-Universität zu Berlin, 2011
36.
Zurück zum Zitat A. Biermanns. X-ray diffraction from single GaAs nanowires. Dissertation, Universität Siegen, 2012 A. Biermanns. X-ray diffraction from single GaAs nanowires. Dissertation, Universität Siegen, 2012
37.
Zurück zum Zitat M. Köhl. Analysis of nanostructures based on diffraction of X-ray radiation. Dissertation, Karlsruhe Institute of Technology, 2014 M. Köhl. Analysis of nanostructures based on diffraction of X-ray radiation. Dissertation, Karlsruhe Institute of Technology, 2014
38.
Zurück zum Zitat N.W. Ashcroft, N.D. Mermin. Festkörperphysik. Oldenbourg Wissenschaftsverlag, 2007 N.W. Ashcroft, N.D. Mermin. Festkörperphysik. Oldenbourg Wissenschaftsverlag, 2007
39.
Zurück zum Zitat C. Kittel, S. Hunklinger, Einführung in die Festkörperphysik. Oldenbourg Wissenschaftsverlag, 2013 C. Kittel, S. Hunklinger, Einführung in die Festkörperphysik. Oldenbourg Wissenschaftsverlag, 2013
40.
Zurück zum Zitat C.-Yu Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992) C.-Yu Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)
41.
Zurück zum Zitat C. Panse, D. Kriegner, F. Bechstedt, Polytypism of GaAs, InP, InAs, and InSb: an ab initio study. Phys. Rev. B 84(7), 075217 (2011). AugustCrossRef C. Panse, D. Kriegner, F. Bechstedt, Polytypism of GaAs, InP, InAs, and InSb: an ab initio study. Phys. Rev. B 84(7), 075217 (2011). AugustCrossRef
42.
Zurück zum Zitat M. Tchernycheva, J.C. Harmand, G. Patriarche, L. Travers, G.E. Cirlin, Temperature conditions for gaas nanowire formation by au-assisted molecular beam epitaxy. Nanotechnology 17(16), 4025 (2006)CrossRef M. Tchernycheva, J.C. Harmand, G. Patriarche, L. Travers, G.E. Cirlin, Temperature conditions for gaas nanowire formation by au-assisted molecular beam epitaxy. Nanotechnology 17(16), 4025 (2006)CrossRef
43.
Zurück zum Zitat S.O. Mariager, S.L. Lauridsen, C.B. Sörensen, A. Dohn, P.R. Willmott, J. Nygård, R. Feidenhansl, Stages in molecular beam epitaxy growth of gaas nanowires studied by x-ray diffraction. Nanotechnology 21(11), 115603 (2010) S.O. Mariager, S.L. Lauridsen, C.B. Sörensen, A. Dohn, P.R. Willmott, J. Nygård, R. Feidenhansl, Stages in molecular beam epitaxy growth of gaas nanowires studied by x-ray diffraction. Nanotechnology 21(11), 115603 (2010)
44.
Zurück zum Zitat M.I. McMahon, R.J. Nelmes, Observation of a wurtzite form of gallium arsenide. Phys. Rev. Lett. 95, 215505 (2005). NovCrossRef M.I. McMahon, R.J. Nelmes, Observation of a wurtzite form of gallium arsenide. Phys. Rev. Lett. 95, 215505 (2005). NovCrossRef
45.
Zurück zum Zitat A. Biermanns, S. Breuer, A. Davydok, L. Geelhaar, U. Pietsch, Structural evolution of self-assisted gaas nanowires grown on si(111). Physica Status Solidi (RRL)—Rapid Research Letters 5(4), 156–158 (2011) A. Biermanns, S. Breuer, A. Davydok, L. Geelhaar, U. Pietsch, Structural evolution of self-assisted gaas nanowires grown on si(111). Physica Status Solidi (RRL)—Rapid Research Letters 5(4), 156–158 (2011)
46.
Zurück zum Zitat D. Jacobsson, F. Yang, K. Hillerich, F. Lenrick, S. Lehmann, D. Kriegner, J. Stangl, L.R. Wallenberg, K.A. Dick, J. Johansson. Phase transformation in radially merged wurtzite GaAs nanowires. Cryst. Growth Des. 15(10), 4795–4803 (2015) D. Jacobsson, F. Yang, K. Hillerich, F. Lenrick, S. Lehmann, D. Kriegner, J. Stangl, L.R. Wallenberg, K.A. Dick, J. Johansson. Phase transformation in radially merged wurtzite GaAs nanowires. Cryst. Growth Des. 15(10), 4795–4803 (2015)
47.
Zurück zum Zitat V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (NanoScience and Technology. Berlin, Heidelberg, 2014) V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (NanoScience and Technology. Berlin, Heidelberg, 2014)
48.
Zurück zum Zitat A.I. Persson, M.W. Larsson, S. Stenström, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 3(10), 677–681 (2004) A.I. Persson, M.W. Larsson, S. Stenström, B.J. Ohlsson, L. Samuelson, L.R. Wallenberg, Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 3(10), 677–681 (2004)
49.
Zurück zum Zitat K.A. Dick, P. Caroff, J. Bolinsson, M.E. Messing, J. Johansson, K. Deppert, L.R. Wallenberg, L. Samuelson, Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 25(2), 024009 (2010) K.A. Dick, P. Caroff, J. Bolinsson, M.E. Messing, J. Johansson, K. Deppert, L.R. Wallenberg, L. Samuelson, Control of III–V nanowire crystal structure by growth parameter tuning. Semicond. Sci. Technol. 25(2), 024009 (2010)
50.
Zurück zum Zitat E. Dimakis, J. Lahnemann, U. Jahn, S. Breuer, M. Hilse, L. Geelhaar, H. Riechert, Self-assisted nucleation and Vapor-Solid growth of InAs nanowires on bare si(111). Cryst. Growth Des. 11(9), 4001–4008 (2011). SeptemberCrossRef E. Dimakis, J. Lahnemann, U. Jahn, S. Breuer, M. Hilse, L. Geelhaar, H. Riechert, Self-assisted nucleation and Vapor-Solid growth of InAs nanowires on bare si(111). Cryst. Growth Des. 11(9), 4001–4008 (2011). SeptemberCrossRef
51.
Zurück zum Zitat K.A. Dick, J. Bolinsson, M.E. Messing, S. Lehmann, J. Johansson, P. Caroff, Parameter space mapping of InAs nanowire crystal structure. J. Vac. Sci. Technol. B 29(4), 04D103 (2011). JulyCrossRef K.A. Dick, J. Bolinsson, M.E. Messing, S. Lehmann, J. Johansson, P. Caroff, Parameter space mapping of InAs nanowire crystal structure. J. Vac. Sci. Technol. B 29(4), 04D103 (2011). JulyCrossRef
52.
Zurück zum Zitat T. Akiyama, K. Sano, K. Nakamura, T. Ito, An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys. 45(9), L275–L278 (2006)CrossRef T. Akiyama, K. Sano, K. Nakamura, T. Ito, An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys. 45(9), L275–L278 (2006)CrossRef
53.
Zurück zum Zitat R. Magri, M. Rosini, F. Casetta, Structural stability of clean GaAs nanowires grown along the [111] direction. Physica Status Solidi C 7(2), 374–377 (2010) R. Magri, M. Rosini, F. Casetta, Structural stability of clean GaAs nanowires grown along the [111] direction. Physica Status Solidi C 7(2), 374–377 (2010)
54.
Zurück zum Zitat M. Rosini, R. Magri, Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. ACS Nano 4(10), 6021–6031 (2010). OctoberCrossRef M. Rosini, R. Magri, Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. ACS Nano 4(10), 6021–6031 (2010). OctoberCrossRef
55.
Zurück zum Zitat T. Rieger, M.I. Lepsa, T. Schäpers, D. Grützmacher, Controlled wurtzite inclusions in self-catalyzed zinc blende III–V semiconductor nanowires. J. Cryst. Growth 378, 506–510 (2013) T. Rieger, M.I. Lepsa, T. Schäpers, D. Grützmacher, Controlled wurtzite inclusions in self-catalyzed zinc blende III–V semiconductor nanowires. J. Cryst. Growth 378, 506–510 (2013)
56.
Zurück zum Zitat J. Johansson, L.S. Karlsson, K.A. Dick, J. Bolinsson, B.A. Wacaser, K. Deppert, L. Samuelson, Effects of supersaturation on the crystal structure of gold seeded III–V nanowires. Cryst. Growth Des. 9(2), 766–773 (2009). FebruaryCrossRef J. Johansson, L.S. Karlsson, K.A. Dick, J. Bolinsson, B.A. Wacaser, K. Deppert, L. Samuelson, Effects of supersaturation on the crystal structure of gold seeded III–V nanowires. Cryst. Growth Des. 9(2), 766–773 (2009). FebruaryCrossRef
57.
Zurück zum Zitat P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygård, D. Chatain, Impact of the liquid phase shape on the structure of III–V nanowires. Phys. Rev. Lett. 106, 125505 (2011). MarCrossRef P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygård, D. Chatain, Impact of the liquid phase shape on the structure of III–V nanowires. Phys. Rev. Lett. 106, 125505 (2011). MarCrossRef
58.
Zurück zum Zitat F. Glas, J.-C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 99(14), 146101 (2007). OctoberCrossRef F. Glas, J.-C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 99(14), 146101 (2007). OctoberCrossRef
59.
Zurück zum Zitat S. Breuer, L.-F. Feiner, L. Geelhaar, Droplet bulge effect on the formation of nanowire side facets. Cryst. Growth Des. 13(7), 2749–2755 (2013)CrossRef S. Breuer, L.-F. Feiner, L. Geelhaar, Droplet bulge effect on the formation of nanowire side facets. Cryst. Growth Des. 13(7), 2749–2755 (2013)CrossRef
60.
Zurück zum Zitat M. Schmidbauer, X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures (Springer Tracts in Modern Physics. Springer, Berlin Heidelberg, Berlin, Heidelberg, 2004)CrossRef M. Schmidbauer, X-Ray Diffuse Scattering from Self-Organized Mesoscopic Semiconductor Structures (Springer Tracts in Modern Physics. Springer, Berlin Heidelberg, Berlin, Heidelberg, 2004)CrossRef
61.
Zurück zum Zitat U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures (Advanced Texts in Physics. Springer, New York, 2004)CrossRef U. Pietsch, V. Holy, T. Baumbach, High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures (Advanced Texts in Physics. Springer, New York, 2004)CrossRef
62.
Zurück zum Zitat D. Grigoriev, S. Lazarev, P. Schroth, A.A. Minkevich, M. Köhl, T. Slobodskyy, M. Helfrich, D.M. Schaadt, T. Aschenbrenner, D. Hommel, T. Baumbach, Asymmetric skew X-ray diffraction at fixed incidence angle: application to semiconductor nano-objects. J. Appl. Crystallogr. 49(3), 961–967 (2016). JunCrossRef D. Grigoriev, S. Lazarev, P. Schroth, A.A. Minkevich, M. Köhl, T. Slobodskyy, M. Helfrich, D.M. Schaadt, T. Aschenbrenner, D. Hommel, T. Baumbach, Asymmetric skew X-ray diffraction at fixed incidence angle: application to semiconductor nano-objects. J. Appl. Crystallogr. 49(3), 961–967 (2016). JunCrossRef
63.
Zurück zum Zitat J.M. Cowley, Diffraction Physics (Elsevier Science B.V., 1995) J.M. Cowley, Diffraction Physics (Elsevier Science B.V., 1995)
64.
Zurück zum Zitat V. Holý, J. Stangl, S. Zerlauth, G. Bauer, N. Darowski, D. Luebbert, U. Pietsch, Lateral arrangement of self-assembled quantum dots in an sige/si superlattice. J. Phys. D: Appl. Phys. 32(10A), A234 (1999)CrossRef V. Holý, J. Stangl, S. Zerlauth, G. Bauer, N. Darowski, D. Luebbert, U. Pietsch, Lateral arrangement of self-assembled quantum dots in an sige/si superlattice. J. Phys. D: Appl. Phys. 32(10A), A234 (1999)CrossRef
65.
Zurück zum Zitat T. Baumbach, D. Luebbert, M. Gailhanou, Strain relaxation in surface nano-structures studied by x-ray diffraction methods. Jpn. J. Appl. Phys. 38(12R), 6591 (1999)CrossRef T. Baumbach, D. Luebbert, M. Gailhanou, Strain relaxation in surface nano-structures studied by x-ray diffraction methods. Jpn. J. Appl. Phys. 38(12R), 6591 (1999)CrossRef
66.
Zurück zum Zitat M. Schmidbauer, S. Seydmohamadi, D. Grigoriev, Z.M. Wang, Y.I. Mazur, P. Schaefer, M. Hanke, R. Köhler, G.J. Salamo, Controlling planar and vertical ordering in three-dimensional (in, ga)as quantum dot lattices by gaas surface orientation. Phys. Rev. Lett. 96, 066108 (2006)CrossRef M. Schmidbauer, S. Seydmohamadi, D. Grigoriev, Z.M. Wang, Y.I. Mazur, P. Schaefer, M. Hanke, R. Köhler, G.J. Salamo, Controlling planar and vertical ordering in three-dimensional (in, ga)as quantum dot lattices by gaas surface orientation. Phys. Rev. Lett. 96, 066108 (2006)CrossRef
67.
Zurück zum Zitat M. Schmidbauer, P. Schaefer, S. Besedin, D. Grigoriev, R. Köhler, M. Hanke, A novel multi-detection technique for 3d reciprocal space mapping in grazing incidence x-ray diffraction. J. Synchrotron Rad. 15(6), 549–57 (2008)CrossRef M. Schmidbauer, P. Schaefer, S. Besedin, D. Grigoriev, R. Köhler, M. Hanke, A novel multi-detection technique for 3d reciprocal space mapping in grazing incidence x-ray diffraction. J. Synchrotron Rad. 15(6), 549–57 (2008)CrossRef
68.
Zurück zum Zitat V. Holý, K. Mundboth, C. Mokuta, T.H. Metzger, J. Stangl, G. Bauer, T. Boeck, M. Schmidbauer, Structural characterization of self-assembled semiconductor islands by three-dimensional x-ray diffraction mapping in reciprocal space. Thin Solid Films 516(22), 8022–8028 (2008). SepCrossRef V. Holý, K. Mundboth, C. Mokuta, T.H. Metzger, J. Stangl, G. Bauer, T. Boeck, M. Schmidbauer, Structural characterization of self-assembled semiconductor islands by three-dimensional x-ray diffraction mapping in reciprocal space. Thin Solid Films 516(22), 8022–8028 (2008). SepCrossRef
69.
Zurück zum Zitat H. Heinke, V. Kirchner, S. Einfeldt, D. Hommel, X-ray diffraction analysis of the defect structure in epitaxial gan. Appl. Phys. Lett 77(14), 2145–2149 (2000)CrossRef H. Heinke, V. Kirchner, S. Einfeldt, D. Hommel, X-ray diffraction analysis of the defect structure in epitaxial gan. Appl. Phys. Lett 77(14), 2145–2149 (2000)CrossRef
70.
Zurück zum Zitat M.A. Moram, C.F. Johnston, J.L. Hollander, M.J. Kappers, C.J. Humphreys, Understanding x-ray diffraction of nonpolar gallium nitride films. J. Appl. Phys. 105, 113501 (2009)CrossRef M.A. Moram, C.F. Johnston, J.L. Hollander, M.J. Kappers, C.J. Humphreys, Understanding x-ray diffraction of nonpolar gallium nitride films. J. Appl. Phys. 105, 113501 (2009)CrossRef
71.
Zurück zum Zitat V.M. Kaganer, O. Brandt, A. Trampert, K.H. Ploog, X-ray diffraction peak profiles from threading dislocations in gan epitaxial films. Phys. Rev. B 72, 264 (2005)CrossRef V.M. Kaganer, O. Brandt, A. Trampert, K.H. Ploog, X-ray diffraction peak profiles from threading dislocations in gan epitaxial films. Phys. Rev. B 72, 264 (2005)CrossRef
72.
Zurück zum Zitat J. Haertwig. X-ray diffraction in the extremely asymmetric laue case with a small angle between the crystal surface and the incident beam. Physica Status Solidi A 42, 495 (1977) J. Haertwig. X-ray diffraction in the extremely asymmetric laue case with a small angle between the crystal surface and the incident beam. Physica Status Solidi A 42, 495 (1977)
73.
Zurück zum Zitat H.R. Hoche, O. Brummer, J. Nieber, Extremely skew x-ray diffraction. Acta Crystallographica Section A: Foundations of Crystallogr. 42(6), 585–587 (1986) H.R. Hoche, O. Brummer, J. Nieber, Extremely skew x-ray diffraction. Acta Crystallographica Section A: Foundations of Crystallogr. 42(6), 585–587 (1986)
74.
Zurück zum Zitat S. Stepanov, R. Kohler, A dynamical theory of extremely asymmetric x-ray diffraction taking account of normal lattice strain. J. Phys. D: Appl. Phys. 27(9), 1922 (1994)CrossRef S. Stepanov, R. Kohler, A dynamical theory of extremely asymmetric x-ray diffraction taking account of normal lattice strain. J. Phys. D: Appl. Phys. 27(9), 1922 (1994)CrossRef
75.
Zurück zum Zitat V. Bushuev, A. Oreshko, X-ray specular reflection under conditions of extremely asymmetric noncoplanar diffraction from a bicrystal. Crystallogr. Rep. 48, 180–186 (2003)CrossRef V. Bushuev, A. Oreshko, X-ray specular reflection under conditions of extremely asymmetric noncoplanar diffraction from a bicrystal. Crystallogr. Rep. 48, 180–186 (2003)CrossRef
76.
Zurück zum Zitat H.-G. Bruel, T. Baumbach, V. Gottschlach, U. Pietsch, Extreme asymmetric x-ray bragg reflection of semiconductor heterostructures near the edge of total external reflection. J. Appl. Cryst 23, 228–233 (1990)CrossRef H.-G. Bruel, T. Baumbach, V. Gottschlach, U. Pietsch, Extreme asymmetric x-ray bragg reflection of semiconductor heterostructures near the edge of total external reflection. J. Appl. Cryst 23, 228–233 (1990)CrossRef
77.
Zurück zum Zitat H.R. Ress, W. Faschinger, G. Landwehr, Depth-dependent x-ray diffraction using extremely asymmetric reflections. J. Phys. D: Appl. Phys. 31, 3272 (1998)CrossRef H.R. Ress, W. Faschinger, G. Landwehr, Depth-dependent x-ray diffraction using extremely asymmetric reflections. J. Phys. D: Appl. Phys. 31, 3272 (1998)CrossRef
78.
Zurück zum Zitat E. Vlieg, Integrated intensities using a six-circle surface X-ray diffractometer. J. Appl. Crystallogr. 30(5 Part 1), 532–543 (1997) E. Vlieg, Integrated intensities using a six-circle surface X-ray diffractometer. J. Appl. Crystallogr. 30(5 Part 1), 532–543 (1997)
79.
Zurück zum Zitat E. Vlieg, A (2+3)-type surface diffractometer: mergence of the z-axis and (2+2)-type geometries. J. Appl. Crystallogr. 31(2), 198–203 (1998). AprCrossRef E. Vlieg, A (2+3)-type surface diffractometer: mergence of the z-axis and (2+2)-type geometries. J. Appl. Crystallogr. 31(2), 198–203 (1998). AprCrossRef
80.
Zurück zum Zitat C.M. Schleputz, S.O. Mariager, S.A. Pauli, R. Feidenhans’l, P.R. Willmott, Angle calculations for a (2+ 3)-type diffractometer: focus on area detectors. J. Appl. Crystallogr. 44(1), 73–83 (2010)CrossRef C.M. Schleputz, S.O. Mariager, S.A. Pauli, R. Feidenhans’l, P.R. Willmott, Angle calculations for a (2+ 3)-type diffractometer: focus on area detectors. J. Appl. Crystallogr. 44(1), 73–83 (2010)CrossRef
81.
Zurück zum Zitat P.H. Fuoss, I.K. Robinson, Apparatus for x-ray diffraction in ultrahigh vacuum. Nucl. Instrum. Methods Phys. Res. 222(1), 171–176 (1984)CrossRef P.H. Fuoss, I.K. Robinson, Apparatus for x-ray diffraction in ultrahigh vacuum. Nucl. Instrum. Methods Phys. Res. 222(1), 171–176 (1984)CrossRef
82.
Zurück zum Zitat S. Ibrahimkutty, A. Seiler, T. Prüßmann, T. Vitova, R. Pradip, O. Bauder, P. Wochner, A. Plech, T. Baumbach, S. Stankov, A portable ultrahigh-vacuum system for advanced synchrotron radiation studies of thin films and nanostructures: EuSi\({_2}\) nano-islands. J. Synchrotron Radiat. 22(1), 91–98 (2015). JanCrossRef S. Ibrahimkutty, A. Seiler, T. Prüßmann, T. Vitova, R. Pradip, O. Bauder, P. Wochner, A. Plech, T. Baumbach, S. Stankov, A portable ultrahigh-vacuum system for advanced synchrotron radiation studies of thin films and nanostructures: EuSi\({_2}\) nano-islands. J. Synchrotron Radiat. 22(1), 91–98 (2015). JanCrossRef
83.
Zurück zum Zitat T. Tsuchiya, T. Taniwatari, K. Uomi, T. Kawano, Y. Ono. In-situ x-ray monitoring in movpe and feedback growth of strained ingaas, in LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels (1992), pp. 646–649 T. Tsuchiya, T. Taniwatari, K. Uomi, T. Kawano, Y. Ono. In-situ x-ray monitoring in movpe and feedback growth of strained ingaas, in LEOS 1992 Summer Topical Meeting Digest on Broadband Analog and Digital Optoelectronics, Optical Multiple Access Networks, Integrated Optoelectronics, and Smart Pixels (1992), pp. 646–649
84.
Zurück zum Zitat R. Döhrmann, S. Botta, A. Buffet, G. Santoro, K. Schlage, M. Schwartzkopf, S. Bommel, J.F.H. Risch, R. Mannweiler, S. Brunner, E. Metwalli, P. Müller-Buschbaum, S.V. Roth, A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation. Rev. Sci. Instrum. 84(4), 043901 (2013) R. Döhrmann, S. Botta, A. Buffet, G. Santoro, K. Schlage, M. Schwartzkopf, S. Bommel, J.F.H. Risch, R. Mannweiler, S. Brunner, E. Metwalli, P. Müller-Buschbaum, S.V. Roth, A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation. Rev. Sci. Instrum. 84(4), 043901 (2013)
85.
Zurück zum Zitat B. Krause, S. Darma, M. Kaufholz, H.-H. Gräfe, S. Ulrich, M. Mantilla, R. Weigel, S. Rembold, T. Baumbach, Modular deposition chamber for in situ X-ray experiments during RF and DC magnetron sputtering. J. Synchrotron Radiat. 19(2), 216–222 (2012). MarCrossRef B. Krause, S. Darma, M. Kaufholz, H.-H. Gräfe, S. Ulrich, M. Mantilla, R. Weigel, S. Rembold, T. Baumbach, Modular deposition chamber for in situ X-ray experiments during RF and DC magnetron sputtering. J. Synchrotron Radiat. 19(2), 216–222 (2012). MarCrossRef
86.
Zurück zum Zitat S. Couet, T. Diederich, K. Schlage, R. Roehlsberger, A compact UHV deposition system for in situ study of ultrathin films via hard x-ray scattering and spectroscopy. Rev. Sci. Instrum. 79(9) (2008) S. Couet, T. Diederich, K. Schlage, R. Roehlsberger, A compact UHV deposition system for in situ study of ultrathin films via hard x-ray scattering and spectroscopy. Rev. Sci. Instrum. 79(9) (2008)
87.
Zurück zum Zitat J.R. Arthur, Molecular beam epitaxy. Surf. Sci. 500(1–3), 189–217 (2002) J.R. Arthur, Molecular beam epitaxy. Surf. Sci. 500(1–3), 189–217 (2002)
88.
Zurück zum Zitat M. Albrecht, H. Antesberger, W. Moritz, H. Plockl, M. Sieber, D. Wolf, Six-circle diffractometer for surface diffraction using an in-vacuum x-ray detector. Rev. Sci. Instrum. 70(8), 3239–3243 (1999) M. Albrecht, H. Antesberger, W. Moritz, H. Plockl, M. Sieber, D. Wolf, Six-circle diffractometer for surface diffraction using an in-vacuum x-ray detector. Rev. Sci. Instrum. 70(8), 3239–3243 (1999)
89.
Zurück zum Zitat R. Baudoing-Savois, M. De Santis, M.C. Saint-Lager, P. Dolle, O. Geaymond, P. Taunier, P. Jeantet, J.P. Roux, G. Renaud, A. Barbier, O. Robach, O. Ulrich, A. Mougin, G. Berard, A new UHV diffractometer for surface structure and real time molecular beam deposition studies with synchrotron radiations at ESRF. Nucl. Instrum. Methods Phys. Res. Section B-Beam Interact. Mater. Atoms 149(1–2), 213–227 (1999) R. Baudoing-Savois, M. De Santis, M.C. Saint-Lager, P. Dolle, O. Geaymond, P. Taunier, P. Jeantet, J.P. Roux, G. Renaud, A. Barbier, O. Robach, O. Ulrich, A. Mougin, G. Berard, A new UHV diffractometer for surface structure and real time molecular beam deposition studies with synchrotron radiations at ESRF. Nucl. Instrum. Methods Phys. Res. Section B-Beam Interact. Mater. Atoms 149(1–2), 213–227 (1999)
90.
Zurück zum Zitat P. Bernard, K. Peters, J. Alvarez, S. Ferrer, Ultrahigh vacuum high pressure chamber for surface x-ray diffraction experiments. Rev. Sci. Instrum. 70(2), 1478–1480 (1999) P. Bernard, K. Peters, J. Alvarez, S. Ferrer, Ultrahigh vacuum high pressure chamber for surface x-ray diffraction experiments. Rev. Sci. Instrum. 70(2), 1478–1480 (1999)
91.
Zurück zum Zitat M. Takahasi, Y. Yoneda, H. Inoue, N. Yamamoto, J. Mizuki, X-ray diffractometer for studies on molecular-beam-epitaxy growth of III–V semiconductors. Jpn. J. Appl. Phys. 41(10R), 6247 (2002)CrossRef M. Takahasi, Y. Yoneda, H. Inoue, N. Yamamoto, J. Mizuki, X-ray diffractometer for studies on molecular-beam-epitaxy growth of III–V semiconductors. Jpn. J. Appl. Phys. 41(10R), 6247 (2002)CrossRef
92.
Zurück zum Zitat B. Jenichen, W. Braun, V.M. Kaganer, A.G. Shtukenberg, L. Daweritz, C.G. Schulz, K.H. Ploog, A. Erko, Combined molecular beam epitaxy and diffractometer system for in situ X-ray studies of crystal growth. Rev. Sci. Instrum. 74(3, 1), 1267–1273 (2003) B. Jenichen, W. Braun, V.M. Kaganer, A.G. Shtukenberg, L. Daweritz, C.G. Schulz, K.H. Ploog, A. Erko, Combined molecular beam epitaxy and diffractometer system for in situ X-ray studies of crystal growth. Rev. Sci. Instrum. 74(3, 1), 1267–1273 (2003)
93.
Zurück zum Zitat S. Stankov, R. Rüffer, M. Sladecek, M. Rennhofer, B. Sepiol, G. Vogl, N. Spiridis, T. Slezak, J. Korecki, An ultrahigh vacuum system for in situ studies of thin films and nanostructures by nuclear resonance scattering of synchrotron radiation. Rev. Sci. Instrum. 79(4), 045108 (2008)CrossRef S. Stankov, R. Rüffer, M. Sladecek, M. Rennhofer, B. Sepiol, G. Vogl, N. Spiridis, T. Slezak, J. Korecki, An ultrahigh vacuum system for in situ studies of thin films and nanostructures by nuclear resonance scattering of synchrotron radiation. Rev. Sci. Instrum. 79(4), 045108 (2008)CrossRef
94.
Zurück zum Zitat H. Tajiri, K. Sumitani, S. Nakatani, T. Takahashi, K. Akimoto, H. Sugiyama, X. Zhang, H. Kawata. Sample holder assembly covering a wide range of temperatures for surface X-ray diffraction. Appl. Surf. Sci. 237(1–4), 645–648 (2004); 7th International Symposium on Atomically Controlled Surfaces, Interfaces and Nanostructures (Nara, JAPAN, 16–20 Nov, 2003) H. Tajiri, K. Sumitani, S. Nakatani, T. Takahashi, K. Akimoto, H. Sugiyama, X. Zhang, H. Kawata. Sample holder assembly covering a wide range of temperatures for surface X-ray diffraction. Appl. Surf. Sci. 237(1–4), 645–648 (2004); 7th International Symposium on Atomically Controlled Surfaces, Interfaces and Nanostructures (Nara, JAPAN, 16–20 Nov, 2003)
95.
Zurück zum Zitat E. Vlieg, A. Van’t Ent, A.P. De Jongh, H. Neerings, J.F. Van Der Veen. An ultrahigh-vacuum chamber for surface X-ray diffraction combined with MBE. Nucl. Instrum. Methods Phys. Res. Section A-Accelerators Spectrometers Detectors and Associated Equipment 262(2–3), 522–527 (1987) E. Vlieg, A. Van’t Ent, A.P. De Jongh, H. Neerings, J.F. Van Der Veen. An ultrahigh-vacuum chamber for surface X-ray diffraction combined with MBE. Nucl. Instrum. Methods Phys. Res. Section A-Accelerators Spectrometers Detectors and Associated Equipment 262(2–3), 522–527 (1987)
96.
Zurück zum Zitat P.M.J. Marée, A.P. De Jongh, J.W. Derks, J.F. Van Der Veen, A system for MBE growth and high-resolution RBS analysis. Nucl. Instrum. Methods Phys. Res. Section B-Beam Interact. Mater. Atoms 28(1), 76–81 (1987) P.M.J. Marée, A.P. De Jongh, J.W. Derks, J.F. Van Der Veen, A system for MBE growth and high-resolution RBS analysis. Nucl. Instrum. Methods Phys. Res. Section B-Beam Interact. Mater. Atoms 28(1), 76–81 (1987)
97.
Zurück zum Zitat T. Slobodskyy, P. Schroth, D. Grigoriev, A.A. Minkevich, D.Z. Hu, D.M. Schaadt, T. Baumbach, A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines. Rev. Sci. Instrum. 83(10) (2012) T. Slobodskyy, P. Schroth, D. Grigoriev, A.A. Minkevich, D.Z. Hu, D.M. Schaadt, T. Baumbach, A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines. Rev. Sci. Instrum. 83(10) (2012)
98.
Zurück zum Zitat P. Schroth, M. Köhl, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, A. Biermanns, S. Bauer, S. Lazarev, U. Pietsch, T. Baumbach, Evolution of polytypism in gaas nanowires during growth revealed by time-resolved in situ x-ray diffraction. Phys. Rev. Lett. 114, 055504 (2015). FebCrossRef P. Schroth, M. Köhl, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, A. Biermanns, S. Bauer, S. Lazarev, U. Pietsch, T. Baumbach, Evolution of polytypism in gaas nanowires during growth revealed by time-resolved in situ x-ray diffraction. Phys. Rev. Lett. 114, 055504 (2015). FebCrossRef
99.
Zurück zum Zitat F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006). SepCrossRef F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302 (2006). SepCrossRef
100.
Zurück zum Zitat K.L. Kavanagh, Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 25(2), 024006 (2010). FebruaryCrossRef K.L. Kavanagh, Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 25(2), 024006 (2010). FebruaryCrossRef
101.
Zurück zum Zitat X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren, Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 11(12), 5441–5448 (2011). DecemberCrossRef X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren, Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 11(12), 5441–5448 (2011). DecemberCrossRef
102.
Zurück zum Zitat J. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Mårtensson, J. Trägårdh, L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8(3), 836–841 (2008). MarchCrossRef J. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Mårtensson, J. Trägårdh, L. Samuelson, Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8(3), 836–841 (2008). MarchCrossRef
103.
Zurück zum Zitat D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, A. Fontcuberta i Morral, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80(24), 245325 (2009) D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, A. Fontcuberta i Morral, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80(24), 245325 (2009)
104.
Zurück zum Zitat M. Hjort, S. Lehmann, J. Knutsson, R. Timm, D. Jacobsson, E. Lundgren, K.A. Dick, A. Mikkelsen, Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces. Nano Lett. 13(9), 4492–4498 (2013). SeptemberCrossRef M. Hjort, S. Lehmann, J. Knutsson, R. Timm, D. Jacobsson, E. Lundgren, K.A. Dick, A. Mikkelsen, Direct imaging of atomic scale structure and electronic properties of GaAs wurtzite and zinc blende nanowire surfaces. Nano Lett. 13(9), 4492–4498 (2013). SeptemberCrossRef
105.
Zurück zum Zitat R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)CrossRef R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)CrossRef
106.
Zurück zum Zitat M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, A.C. Ferrari, Dynamic catalyst restructuring during carbon nanotube growth. ACS Nano 4(12), 7587–7595 (2010)CrossRef M. Moseler, F. Cervantes-Sodi, S. Hofmann, G. Csányi, A.C. Ferrari, Dynamic catalyst restructuring during carbon nanotube growth. ACS Nano 4(12), 7587–7595 (2010)CrossRef
107.
Zurück zum Zitat A.D. Gamalski, C. Ducati, S. Hofmann, Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. The J. Phys. Chem. C 115(11), 4413–4417 (2011)CrossRef A.D. Gamalski, C. Ducati, S. Hofmann, Cyclic supersaturation and triple phase boundary dynamics in germanium nanowire growth. The J. Phys. Chem. C 115(11), 4413–4417 (2011)CrossRef
108.
Zurück zum Zitat V.G. Dubrovskii, G.E. Cirlin, N.V. Sibirev, F. Jabeen, J.C. Harmand, P. Werner, New mode of vapor-liquid-solid nanowire growth. Nano Lett. 11(3), 1247–1253 (2011). PMID: 21344916CrossRef V.G. Dubrovskii, G.E. Cirlin, N.V. Sibirev, F. Jabeen, J.C. Harmand, P. Werner, New mode of vapor-liquid-solid nanowire growth. Nano Lett. 11(3), 1247–1253 (2011). PMID: 21344916CrossRef
109.
Zurück zum Zitat A.D. Gamalski, J. Tersoff, R. Sharma, C. Ducati, S. Hofmann, Metastable crystalline auge catalysts formed during isothermal germanium nanowire growth. Phys. Rev. Lett. 108, 255702 (2012). JunCrossRef A.D. Gamalski, J. Tersoff, R. Sharma, C. Ducati, S. Hofmann, Metastable crystalline auge catalysts formed during isothermal germanium nanowire growth. Phys. Rev. Lett. 108, 255702 (2012). JunCrossRef
110.
Zurück zum Zitat P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4(1), 50–55 (2009). JanuaryCrossRef P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires. Nat. Nanotechnol. 4(1), 50–55 (2009). JanuaryCrossRef
111.
Zurück zum Zitat J. Johansson, K.A. Dick, P. Caroff, M.E. Messing, J. Bolinsson, K. Deppert, L. Samuelson, Diameter dependence of the Wurtzite-Zinc blende transition in InAs nanowires. The J. Phys. Chem. C 114(9), 3837–3842 (2010). MarchCrossRef J. Johansson, K.A. Dick, P. Caroff, M.E. Messing, J. Bolinsson, K. Deppert, L. Samuelson, Diameter dependence of the Wurtzite-Zinc blende transition in InAs nanowires. The J. Phys. Chem. C 114(9), 3837–3842 (2010). MarchCrossRef
112.
Zurück zum Zitat C.-Y. Wen, J. Tersoff, K. Hillerich, M.C. Reuter, J.H. Park, S. Kodambaka, E.A. Stach, F.M. Ross, Periodically changing morphology of the growth interface in si, ge, and GaP nanowires. Phys. Rev. Lett. 107(2), 025503 (2011). JulyCrossRef C.-Y. Wen, J. Tersoff, K. Hillerich, M.C. Reuter, J.H. Park, S. Kodambaka, E.A. Stach, F.M. Ross, Periodically changing morphology of the growth interface in si, ge, and GaP nanowires. Phys. Rev. Lett. 107(2), 025503 (2011). JulyCrossRef
113.
Zurück zum Zitat R.E. Algra, M.A. Verheijen, M.T. Borgström, L. Feiner, G. Immink, W.J.P. van Enckevort, E. Vlieg, E.P.A.M. Bakkers, Twinning superlattices in indium phosphide nanowires. Nature 456(7220), 369–372 (2008) R.E. Algra, M.A. Verheijen, M.T. Borgström, L. Feiner, G. Immink, W.J.P. van Enckevort, E. Vlieg, E.P.A.M. Bakkers, Twinning superlattices in indium phosphide nanowires. Nature 456(7220), 369–372 (2008)
114.
Zurück zum Zitat H.J. Joyce, J. Wong-Leung, Q. Gao, H. Hoe Tan, C. Jagadish. Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters. Nano Lett. 10(3), 908–915 (2010) H.J. Joyce, J. Wong-Leung, Q. Gao, H. Hoe Tan, C. Jagadish. Phase perfection in zinc blende and wurtzite III-V nanowires using basic growth parameters. Nano Lett. 10(3), 908–915 (2010)
115.
Zurück zum Zitat J. Johansson, L.S. Karlsson, C. Patrik, T. Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson, W. Seifert, Structural properties of 111 111, b-oriented III–V nanowires. Nat. Mater. 5(7), 574–580 (2006) J. Johansson, L.S. Karlsson, C. Patrik, T. Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson, W. Seifert, Structural properties of 111 111, b-oriented III–V nanowires. Nat. Mater. 5(7), 574–580 (2006)
116.
Zurück zum Zitat V.G. Dubrovskii, N.V. Sibirev, J.C. Harmand, F. Glas, Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008). DecCrossRef V.G. Dubrovskii, N.V. Sibirev, J.C. Harmand, F. Glas, Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008). DecCrossRef
117.
Zurück zum Zitat J. Johansson, J. Bolinsson, M. Ek, P. Caroff, K.A. Dick, Combinatorial approaches to understanding polytypism in III–V nanowires. ACS Nano 6(7), 6142–6149 (2012)CrossRef J. Johansson, J. Bolinsson, M. Ek, P. Caroff, K.A. Dick, Combinatorial approaches to understanding polytypism in III–V nanowires. ACS Nano 6(7), 6142–6149 (2012)CrossRef
118.
Zurück zum Zitat P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Select. Top. Quantum Electron. 17(4), 829–846 (2011) P. Caroff, J. Bolinsson, J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism. IEEE J. Select. Top. Quantum Electron. 17(4), 829–846 (2011)
119.
Zurück zum Zitat D. Kriegner, C. Panse, B. Mandl, K.A. Dick, M. Keplinger, J.M. Persson, P. Caroff, D. Ercolani, L. Sorba, F. Bechstedt, J. Stangl, G. Bauer, Unit cell structure of crystal polytypes in InAs and InSb nanowires. Nano Lett. 11(4), 1483–1489 (2011). AprilCrossRef D. Kriegner, C. Panse, B. Mandl, K.A. Dick, M. Keplinger, J.M. Persson, P. Caroff, D. Ercolani, L. Sorba, F. Bechstedt, J. Stangl, G. Bauer, Unit cell structure of crystal polytypes in InAs and InSb nanowires. Nano Lett. 11(4), 1483–1489 (2011). AprilCrossRef
120.
Zurück zum Zitat P. Krogstrup, M. Hannibal Madsen, W. Hu, M. Kozu, Y. Nakata, J. Nygård, M. Takahasi, R. Feidenhans’l. In-situ x-ray characterization of wurtzite formation in gaas nanowires. Appl. Phys. Lett. 100(9) (2012) P. Krogstrup, M. Hannibal Madsen, W. Hu, M. Kozu, Y. Nakata, J. Nygård, M. Takahasi, R. Feidenhans’l. In-situ x-ray characterization of wurtzite formation in gaas nanowires. Appl. Phys. Lett. 100(9) (2012)
121.
Zurück zum Zitat D. Kriegner, J.M. Persson, T. Etzelstorfer, D. Jacobsson, J. Wallentin, J.B. Wagner, K. Deppert, M.T. Borgström, J. Stangl. Structural investigation of GaInP nanowires using X-ray diffraction. Thin Solid Films 543(0), 100–105 (2013); International Conference NanoSEA (NANOstructures SElf Assembly, 2012) D. Kriegner, J.M. Persson, T. Etzelstorfer, D. Jacobsson, J. Wallentin, J.B. Wagner, K. Deppert, M.T. Borgström, J. Stangl. Structural investigation of GaInP nanowires using X-ray diffraction. Thin Solid Films 543(0), 100–105 (2013); International Conference NanoSEA (NANOstructures SElf Assembly, 2012)
122.
Zurück zum Zitat S.T. Haag, M.-I. Richard, V. Favre-Nicolin, U. Welzel, L.P.H. Jeurgens, S. Ravy, G. Richter, E.J. Mittemeijer, O. Thomas. In situ coherent x-ray diffraction of isolated core-shell nanowires. Thin Solid Films 530, 113–119 (2013); 6th Size-Strain International Conference Diffraction Analysis of the Microstructure of Materials S.T. Haag, M.-I. Richard, V. Favre-Nicolin, U. Welzel, L.P.H. Jeurgens, S. Ravy, G. Richter, E.J. Mittemeijer, O. Thomas. In situ coherent x-ray diffraction of isolated core-shell nanowires. Thin Solid Films 530, 113–119 (2013); 6th Size-Strain International Conference Diffraction Analysis of the Microstructure of Materials
123.
Zurück zum Zitat J. Gulden, S.O. Mariager, A.P. Mancuso, O.M. Yefanov, J. Baltser, P. Krogstrup, J. Patommel, M. Burghammer, R. Feidenhans’l, I.A. Vartanyants, Coherent x-ray nanodiffraction on single gaas nanowires. Physica Status Solidi A 208(11), 2495–2498 (2011) J. Gulden, S.O. Mariager, A.P. Mancuso, O.M. Yefanov, J. Baltser, P. Krogstrup, J. Patommel, M. Burghammer, R. Feidenhans’l, I.A. Vartanyants, Coherent x-ray nanodiffraction on single gaas nanowires. Physica Status Solidi A 208(11), 2495–2498 (2011)
124.
Zurück zum Zitat F. Glas, M.R. Ramdani, G. Patriarche, J.-C. Harmand, Predictive modeling of self-catalyzed iii-v nanowire growth. Phys. Rev. B 88, 195304 (2013) F. Glas, M.R. Ramdani, G. Patriarche, J.-C. Harmand, Predictive modeling of self-catalyzed iii-v nanowire growth. Phys. Rev. B 88, 195304 (2013)
125.
Zurück zum Zitat M.W. Larsson, J.B. Wagner, M. Wallin, P. Håkansson, L.E. Fröberg, L. Samuelson, L.R. Wallenberg, Strain mapping in free-standing heterostructured wurtzite inas/inp nanowires. Nanotechnology 18(1), 015504 (2007) M.W. Larsson, J.B. Wagner, M. Wallin, P. Håkansson, L.E. Fröberg, L. Samuelson, L.R. Wallenberg, Strain mapping in free-standing heterostructured wurtzite inas/inp nanowires. Nanotechnology 18(1), 015504 (2007)
126.
Zurück zum Zitat A. Biermanns, S. Breuer, A. Trampert, A. Davydok, L. Geelhaar, U. Pietsch, Strain accommodation in ga-assisted gaas nanowires grown on silicon (111). Nanotechnology 23(30), 305703 (2012)CrossRef A. Biermanns, S. Breuer, A. Trampert, A. Davydok, L. Geelhaar, U. Pietsch, Strain accommodation in ga-assisted gaas nanowires grown on silicon (111). Nanotechnology 23(30), 305703 (2012)CrossRef
127.
Zurück zum Zitat A. Davydok, S. Breuer, A. Biermanns, L. Geelhaar, U. Pietsch, Lattice parameter accommodation between gaas(111) nanowires and si(111) substrate after growth via au-assisted molecular beam epitaxy. Nanoscale Res. Lett. 7(1), 109 (2012)CrossRef A. Davydok, S. Breuer, A. Biermanns, L. Geelhaar, U. Pietsch, Lattice parameter accommodation between gaas(111) nanowires and si(111) substrate after growth via au-assisted molecular beam epitaxy. Nanoscale Res. Lett. 7(1), 109 (2012)CrossRef
128.
Zurück zum Zitat A. Biermanns, S. Breuer, A. Davydok, L. Geelhaar, U. Pietsch, Structural polytypism and residual strain in GaAs nanowires grown on Si(111) probed by single-nanowire X-ray diffraction. J. Appl. Crystallogr. 45(2), 239–244 (2012). AprCrossRef A. Biermanns, S. Breuer, A. Davydok, L. Geelhaar, U. Pietsch, Structural polytypism and residual strain in GaAs nanowires grown on Si(111) probed by single-nanowire X-ray diffraction. J. Appl. Crystallogr. 45(2), 239–244 (2012). AprCrossRef
129.
Zurück zum Zitat M. Yamaguchi, J.-H. Paek, H. Amano, Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate. Nanoscale Res. Lett. 7(1), 558 (2012). OctoberCrossRef M. Yamaguchi, J.-H. Paek, H. Amano, Probability of twin formation on self-catalyzed GaAs nanowires on Si substrate. Nanoscale Res. Lett. 7(1), 558 (2012). OctoberCrossRef
130.
Zurück zum Zitat V. Dubrovskii, N. Sibirev, G. Cirlin, J. Harmand, V. Ustinov, Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. Phys. Rev. E 73(2) (2006) V. Dubrovskii, N. Sibirev, G. Cirlin, J. Harmand, V. Ustinov, Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. Phys. Rev. E 73(2) (2006)
131.
Zurück zum Zitat C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral. Ga-assisted catalyst-free growth mechanism of gaas nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008) C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral. Ga-assisted catalyst-free growth mechanism of gaas nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008)
132.
Zurück zum Zitat V. Pankoke, S. Sakong, P. Kratzer, Role of sidewall diffusion in GaAs nanowire growth: a first-principles study. Phys. Rev. B 86(8), 085425 (2012). AugustCrossRef V. Pankoke, S. Sakong, P. Kratzer, Role of sidewall diffusion in GaAs nanowire growth: a first-principles study. Phys. Rev. B 86(8), 085425 (2012). AugustCrossRef
133.
Zurück zum Zitat J.C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism in au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87(20), 203101 (2005). NovemberCrossRef J.C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism in au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87(20), 203101 (2005). NovemberCrossRef
134.
Zurück zum Zitat M. Köhl, P. Schroth, T. Baumbach, Perspectives and limitations of symmetric X-ray bragg reflections for inspecting polytypism in nanowires. J. Synchrotron Radiat. 23(2), 487–500 (2016). MarCrossRef M. Köhl, P. Schroth, T. Baumbach, Perspectives and limitations of symmetric X-ray bragg reflections for inspecting polytypism in nanowires. J. Synchrotron Radiat. 23(2), 487–500 (2016). MarCrossRef
135.
Zurück zum Zitat P. Schroth, J. Jakob, L. Feigl, S.M.M. Kashani, U. Pietsch, T. Baumbach, Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism. MRS Commun. 8(3), 871–877 (2018)CrossRef P. Schroth, J. Jakob, L. Feigl, S.M.M. Kashani, U. Pietsch, T. Baumbach, Lithography-free variation of the number density of self-catalyzed GaAs nanowires and its impact on polytypism. MRS Commun. 8(3), 871–877 (2018)CrossRef
136.
Zurück zum Zitat P. Schroth, J. Jakob, L. Feigl, S.M.M. Kashani, J. Vogel, J. Strempfer, T.F. Keller, U. Pietsch, T. Baumbach, Radial growth of self-catalyzed GaAs nanowires and the evolution of the liquid Ga-droplet studied by time-resolved in situ X-ray diffraction. Nano Lett. 18(1), 101–108 (2018)CrossRef P. Schroth, J. Jakob, L. Feigl, S.M.M. Kashani, J. Vogel, J. Strempfer, T.F. Keller, U. Pietsch, T. Baumbach, Radial growth of self-catalyzed GaAs nanowires and the evolution of the liquid Ga-droplet studied by time-resolved in situ X-ray diffraction. Nano Lett. 18(1), 101–108 (2018)CrossRef
137.
Zurück zum Zitat A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, J.R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92(6) (2008) A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, J.R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires. Appl. Phys. Lett. 92(6) (2008)
138.
Zurück zum Zitat R.S. Wagner, W.C. Ellis, Vapor-Liquid-Solid Mechanism of Crystal Growth and its Application to Silicon (Bell Telephone Laboratories, 1965) R.S. Wagner, W.C. Ellis, Vapor-Liquid-Solid Mechanism of Crystal Growth and its Application to Silicon (Bell Telephone Laboratories, 1965)
139.
Zurück zum Zitat P. Krogstrup, R. Popovitz-Biro, E. Johnson, M.H.Madsen, J. Nygård, H. Shtrikman, Structural phase control in self-catalyzed growth of gaas nanowires on silicon (111). Nano Lett. 10(11), 4475–4482 (2010) (PMID: 20932012) P. Krogstrup, R. Popovitz-Biro, E. Johnson, M.H.Madsen, J. Nygård, H. Shtrikman, Structural phase control in self-catalyzed growth of gaas nanowires on silicon (111). Nano Lett. 10(11), 4475–4482 (2010) (PMID: 20932012)
140.
Zurück zum Zitat B.J. O’Dowd, T. Wojtowicz, S. Rouvimov, X. Liu, R. Pimpinella, V. Kolkovsky, T. Wojciechowski, M. Zgirski, M. Dobrowolska, I.V. Shvets, J. Furdyna, Effect of catalyst diameter on vapour-liquid-solid growth of gaas nanowires. J. Appl. Phys. 116(6) (2014) B.J. O’Dowd, T. Wojtowicz, S. Rouvimov, X. Liu, R. Pimpinella, V. Kolkovsky, T. Wojciechowski, M. Zgirski, M. Dobrowolska, I.V. Shvets, J. Furdyna, Effect of catalyst diameter on vapour-liquid-solid growth of gaas nanowires. J. Appl. Phys. 116(6) (2014)
141.
Zurück zum Zitat S. Crawford, S.K. Lim, S. Gradec̆ak, Fundamental insights into nanowire diameter modulation and the liquid/solid interface. Nano Lett. 13(1), 226–232 (2013) (PMID: 23256571) S. Crawford, S.K. Lim, S. Gradec̆ak, Fundamental insights into nanowire diameter modulation and the liquid/solid interface. Nano Lett. 13(1), 226–232 (2013) (PMID: 23256571)
142.
Zurück zum Zitat H. Wang, Z. Xie, W. Yang, J. Fang, L. An, Morphology control in the vapor-liquid-solid growth of sic nanowires. Cryst. Growth Des. 8(11), 3893–3896 (2008)CrossRef H. Wang, Z. Xie, W. Yang, J. Fang, L. An, Morphology control in the vapor-liquid-solid growth of sic nanowires. Cryst. Growth Des. 8(11), 3893–3896 (2008)CrossRef
143.
Zurück zum Zitat G. Priante, S. Ambrosini, V.G. Dubrovskii, A. Franciosi, S. Rubini, Stopping and resuming at will the growth of gaas nanowires. Cryst. Growth Des. 13(9), 3976–3984 (2013)CrossRef G. Priante, S. Ambrosini, V.G. Dubrovskii, A. Franciosi, S. Rubini, Stopping and resuming at will the growth of gaas nanowires. Cryst. Growth Des. 13(9), 3976–3984 (2013)CrossRef
144.
Zurück zum Zitat Y. Greenberg, A. Kelrich, Y. Calahorra, S. Cohen, D. Ritter, Tapering and crystal structure of indium phosphide nanowires grown by selective area vapor liquid solid epitaxy. J. Cryst. Growth 389, 103–107 (2014)CrossRef Y. Greenberg, A. Kelrich, Y. Calahorra, S. Cohen, D. Ritter, Tapering and crystal structure of indium phosphide nanowires grown by selective area vapor liquid solid epitaxy. J. Cryst. Growth 389, 103–107 (2014)CrossRef
145.
Zurück zum Zitat Y. Zhang, A.M. Sanchez, Y. Sun, W. Jiang, M. Aagesen, S. Huo, D. Kim, P. Jurczak, X. Xiulai, H. Liu, Influence of droplet size on the growth of self-catalyzed ternary gaasp nanowires. Nano Lett. 16(2), 1237–1243 (2016). PMID: 26708002CrossRef Y. Zhang, A.M. Sanchez, Y. Sun, W. Jiang, M. Aagesen, S. Huo, D. Kim, P. Jurczak, X. Xiulai, H. Liu, Influence of droplet size on the growth of self-catalyzed ternary gaasp nanowires. Nano Lett. 16(2), 1237–1243 (2016). PMID: 26708002CrossRef
146.
Zurück zum Zitat V.G. Dubrovskii, The theory of nucleation and polytypism of III–V semiconductor nanowires. Tech. Phys. Lett. 41(2), 203–207 (2015)CrossRef V.G. Dubrovskii, The theory of nucleation and polytypism of III–V semiconductor nanowires. Tech. Phys. Lett. 41(2), 203–207 (2015)CrossRef
147.
Zurück zum Zitat Yu. Xuezhe, H. Wang, L. Jun, J. Zhao, J. Misuraca, P. Xiong, S. von Molnár, Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed gaas nanowires. Nano Lett. 12(10), 5436–5442 (2012). PMID: 22984828CrossRef Yu. Xuezhe, H. Wang, L. Jun, J. Zhao, J. Misuraca, P. Xiong, S. von Molnár, Evidence for structural phase transitions induced by the triple phase line shift in self-catalyzed gaas nanowires. Nano Lett. 12(10), 5436–5442 (2012). PMID: 22984828CrossRef
148.
Zurück zum Zitat C. García Núñez, A.F. Braña, J.L. Pau, D. Ghita, B.J. García, G. Shen, D.S. Wilbert, S.M. Kim, P. Kung. Pure zincblende GaAs nanowires grown by Ga-assisted chemical beam epitaxy. J. Cryst. Growth 372, 205–212 (2013) C. García Núñez, A.F. Braña, J.L. Pau, D. Ghita, B.J. García, G. Shen, D.S. Wilbert, S.M. Kim, P. Kung. Pure zincblende GaAs nanowires grown by Ga-assisted chemical beam epitaxy. J. Cryst. Growth 372, 205–212 (2013)
149.
Zurück zum Zitat D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531(7594), 317+ (2016) D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531(7594), 317+ (2016)
150.
Zurück zum Zitat S. Lehmann, D. Jacobsson, K.A. Dick, Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes. Nanotechnology 26(30) (2015) S. Lehmann, D. Jacobsson, K.A. Dick, Crystal phase control in GaAs nanowires: opposing trends in the Ga- and As-limited growth regimes. Nanotechnology 26(30) (2015)
151.
Zurück zum Zitat L. Balaghi, T. Tauchnitz, R. Huebner, L. Bischoff, H. Schneider, M. Helm, E. Dimakis, Droplet-confined alternate pulsed epitaxy of GaAs nanowires on Si substrates down to CMOS-compatible temperatures. Nano Lett. 16(7), 4032–4039 (2016) L. Balaghi, T. Tauchnitz, R. Huebner, L. Bischoff, H. Schneider, M. Helm, E. Dimakis, Droplet-confined alternate pulsed epitaxy of GaAs nanowires on Si substrates down to CMOS-compatible temperatures. Nano Lett. 16(7), 4032–4039 (2016)
152.
Zurück zum Zitat X. Hongyi, Y. Wang, Y. Guo, Z. Liao, Q. Gao, N. Jiang, H.H. Tan, C. Jagadish, J. Zou, High-density, defect-free, and taper-restrained epitaxial gaas nanowires induced from annealed au thin films. Cryst. Growth Des. 12(4), 2018–2022 (2012)CrossRef X. Hongyi, Y. Wang, Y. Guo, Z. Liao, Q. Gao, N. Jiang, H.H. Tan, C. Jagadish, J. Zou, High-density, defect-free, and taper-restrained epitaxial gaas nanowires induced from annealed au thin films. Cryst. Growth Des. 12(4), 2018–2022 (2012)CrossRef
153.
Zurück zum Zitat G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler, J.-C. Harmand, Sharpening the interfaces of axial heterostructures in self-catalyzed AlGaAs nanowires: experiment and theory. Nano Lett. 16(3), 1917–1924 (2016) G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler, J.-C. Harmand, Sharpening the interfaces of axial heterostructures in self-catalyzed AlGaAs nanowires: experiment and theory. Nano Lett. 16(3), 1917–1924 (2016)
154.
Zurück zum Zitat Vijay Kris Narasimhan and Yi Cui, Nanostructures for photon management in solar cells. Nanophotonics 2(3), 187–210 (2013)CrossRef Vijay Kris Narasimhan and Yi Cui, Nanostructures for photon management in solar cells. Nanophotonics 2(3), 187–210 (2013)CrossRef
155.
Zurück zum Zitat K.H. Li, X. Liu, Q. Wang, S. Zhao, Z. Mi, Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol. 10(2), 140–144 (2015). FebruaryCrossRef K.H. Li, X. Liu, Q. Wang, S. Zhao, Z. Mi, Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol. 10(2), 140–144 (2015). FebruaryCrossRef
156.
Zurück zum Zitat S. Zhao, S.Y. Woo, M. Bugnet, X. Liu, J. Kang, G.A. Botton, Z. Mi, Three-dimensional quantum confinement of charge carriers in self-organized algan nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett. 15(12), 7801–7807 (2015). PMID: 26539880CrossRef S. Zhao, S.Y. Woo, M. Bugnet, X. Liu, J. Kang, G.A. Botton, Z. Mi, Three-dimensional quantum confinement of charge carriers in self-organized algan nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett. 15(12), 7801–7807 (2015). PMID: 26539880CrossRef
157.
Zurück zum Zitat P. Periwal, T. Baron, P. Gentile, B. Salem, F. Bassani. Growth strategies to control tapering in ge nanowires. APL Mater. 2(4) (2014) P. Periwal, T. Baron, P. Gentile, B. Salem, F. Bassani. Growth strategies to control tapering in ge nanowires. APL Mater. 2(4) (2014)
158.
Zurück zum Zitat S. Krylyuk, A.V. Davydov, I. Levin, Tapering control of si nanowires grown from sicl4 at reduced pressure. ACS Nano 5(1), 656–664 (2011). PMID: 21158417CrossRef S. Krylyuk, A.V. Davydov, I. Levin, Tapering control of si nanowires grown from sicl4 at reduced pressure. ACS Nano 5(1), 656–664 (2011). PMID: 21158417CrossRef
159.
Zurück zum Zitat S.K. Lim, S. Crawford, G. Haberfehlner, S. Gradec̆ak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13(2), 331–336 (2013) (PMID: 22313231) S.K. Lim, S. Crawford, G. Haberfehlner, S. Gradec̆ak, Controlled modulation of diameter and composition along individual III–V nitride nanowires. Nano Lett. 13(2), 331–336 (2013) (PMID: 22313231)
160.
Zurück zum Zitat P. Krogstrup, H.I. Jørgensen, E. Johnson, M.H. Madsen, C.B. Sørensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygård, F. Glas. Advances in the theory of III–V nanowire growth dynamics. J. Phys. D: Appl. Phys. 46(31), 313001 (2013) P. Krogstrup, H.I. Jørgensen, E. Johnson, M.H. Madsen, C.B. Sørensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygård, F. Glas. Advances in the theory of III–V nanowire growth dynamics. J. Phys. D: Appl. Phys. 46(31), 313001 (2013)
161.
Zurück zum Zitat K.W. Schwarz, J. Tersoff, S. Kodambaka, Y.-C. Chou, F.M. Ross, Geometrical frustration in nanowire growth. Phys. Rev. Lett. 107, 265502 (2011). DecCrossRef K.W. Schwarz, J. Tersoff, S. Kodambaka, Y.-C. Chou, F.M. Ross, Geometrical frustration in nanowire growth. Phys. Rev. Lett. 107, 265502 (2011). DecCrossRef
162.
Zurück zum Zitat V.G. Dubrovskii, V. Consonni, L. Geelhaar, A. Trampert, H. Riechert, Scaling growth kinetics of self-induced GaN nanowires. Appl. Phys. Lett. 100(15), 153101 (2012)CrossRef V.G. Dubrovskii, V. Consonni, L. Geelhaar, A. Trampert, H. Riechert, Scaling growth kinetics of self-induced GaN nanowires. Appl. Phys. Lett. 100(15), 153101 (2012)CrossRef
163.
Zurück zum Zitat N. Jiang, J. Wong-Leung, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish. Understanding the true shape of au-catalyzed gaas nanowires. Nano Lett. 14(10), 5865–5872 (2014) (PMID: 25244584) N. Jiang, J. Wong-Leung, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish. Understanding the true shape of au-catalyzed gaas nanowires. Nano Lett. 14(10), 5865–5872 (2014) (PMID: 25244584)
164.
Zurück zum Zitat P. Rueda-Fonseca, E. Bellet-Amalric, R. Vigliaturo, M. den Hertog, Y. Genuist, R. André, E. Robin, A. Artioli, P. Stepanov, D. Ferrand, K. Kheng, S. Tatarenko, J. Cibert, Structure and morphology in diffusion-driven growth of nanowires: the case of znte. Nano Lett. 14(4), 1877–1883 (2014). PMID: 24564275CrossRef P. Rueda-Fonseca, E. Bellet-Amalric, R. Vigliaturo, M. den Hertog, Y. Genuist, R. André, E. Robin, A. Artioli, P. Stepanov, D. Ferrand, K. Kheng, S. Tatarenko, J. Cibert, Structure and morphology in diffusion-driven growth of nanowires: the case of znte. Nano Lett. 14(4), 1877–1883 (2014). PMID: 24564275CrossRef
165.
Zurück zum Zitat S.N. Filimonov, Y.Y. Hervieu, Model of step propagation and step bunching at the sidewalls of nanowires. J. Cryst. Growth 427, 60–66 (2015) S.N. Filimonov, Y.Y. Hervieu, Model of step propagation and step bunching at the sidewalls of nanowires. J. Cryst. Growth 427, 60–66 (2015)
166.
Zurück zum Zitat C.-Y. Wen, J. Tersoff, M.C. Reuter, E.A. Stach, F.M. Ross, Step-flow kinetics in nanowire growth. Phys. Rev. Lett. 105, 195502 (2010). NovCrossRef C.-Y. Wen, J. Tersoff, M.C. Reuter, E.A. Stach, F.M. Ross, Step-flow kinetics in nanowire growth. Phys. Rev. Lett. 105, 195502 (2010). NovCrossRef
167.
Zurück zum Zitat C. Chen, M.C. Plante, C. Fradin, R.R. LaPierre, Layer-by-layer and step-flow growth mechanisms in gaasp/gap nanowire heterostructures. J. Mater. Res. 21, 2801–2809 (2006)CrossRef C. Chen, M.C. Plante, C. Fradin, R.R. LaPierre, Layer-by-layer and step-flow growth mechanisms in gaasp/gap nanowire heterostructures. J. Mater. Res. 21, 2801–2809 (2006)CrossRef
168.
Zurück zum Zitat V.G. Dubrovskii, Y. Berdnikov, N.V. Sibirev, Regimes of radial growth for ga-catalyzed gaas nanowires. Appl. Phys. A 122(7), 671 (2016)CrossRef V.G. Dubrovskii, Y. Berdnikov, N.V. Sibirev, Regimes of radial growth for ga-catalyzed gaas nanowires. Appl. Phys. A 122(7), 671 (2016)CrossRef
169.
Zurück zum Zitat V.G. Dubrovskii, T. Xu, A. Díaz Álvarez, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier. Self-equilibration of the diameter of ga-catalyzed gaas nanowires. Nano Lett. 15(8), 5580–5584 (2015) (PMID: 26189571) V.G. Dubrovskii, T. Xu, A. Díaz Álvarez, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier. Self-equilibration of the diameter of ga-catalyzed gaas nanowires. Nano Lett. 15(8), 5580–5584 (2015) (PMID: 26189571)
170.
Zurück zum Zitat J. Tersoff, Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15(10), 6609–6613 (2015). PMID: 26389697CrossRef J. Tersoff, Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15(10), 6609–6613 (2015). PMID: 26389697CrossRef
171.
Zurück zum Zitat A. Stierle, T.F. Keller, H. Noei, V. Vonk, R. Roehlsberger, DESY NanoLab. J. large-scale Res. Facil. JLSRF 2, 76 (2016). JuneCrossRef A. Stierle, T.F. Keller, H. Noei, V. Vonk, R. Roehlsberger, DESY NanoLab. J. large-scale Res. Facil. JLSRF 2, 76 (2016). JuneCrossRef
172.
Zurück zum Zitat M. Takahasi, M. Kozu, T. Sasaki, H. Wen, Mechanisms determining the structure of gold-catalyzed gaas nanowires studied by in situ x-ray diffraction. Cryst. Growth Des. 15(10), 4979–4985 (2015)CrossRef M. Takahasi, M. Kozu, T. Sasaki, H. Wen, Mechanisms determining the structure of gold-catalyzed gaas nanowires studied by in situ x-ray diffraction. Cryst. Growth Des. 15(10), 4979–4985 (2015)CrossRef
173.
Zurück zum Zitat J. Strempfer, S. Francoual, D. Reuther, D.K. Shukla, A. Skaugen, H. Schulte-Schrepping, T. Kracht, H. Franz, Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Radiat. 20(4), 541–549 (2013). JulCrossRef J. Strempfer, S. Francoual, D. Reuther, D.K. Shukla, A. Skaugen, H. Schulte-Schrepping, T. Kracht, H. Franz, Resonant scattering and diffraction beamline P09 at PETRA III. J. Synchrotron Radiat. 20(4), 541–549 (2013). JulCrossRef
174.
Zurück zum Zitat M. Köhl, P. Schroth, A.A. Minkevich, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, T. Aschenbrenner, S. Lazarev, D. Grigoriev, U. Pietsch, T. Baumbach, Polytypism in GaAs nanowires: determination of the interplanar spacing of wurtzite GaAs by X-ray diffraction. J. Synchrotron Radiat. 22(1), 67–75 (2015). JanCrossRef M. Köhl, P. Schroth, A.A. Minkevich, J.-W. Hornung, E. Dimakis, C. Somaschini, L. Geelhaar, T. Aschenbrenner, S. Lazarev, D. Grigoriev, U. Pietsch, T. Baumbach, Polytypism in GaAs nanowires: determination of the interplanar spacing of wurtzite GaAs by X-ray diffraction. J. Synchrotron Radiat. 22(1), 67–75 (2015). JanCrossRef
175.
Zurück zum Zitat A. Biermanns, A. Davydok, H. Paetzelt, A. Diaz, V. Gottschalch, T.H. Metzger, U. Pietsch, Individual GaAs nanorods imaged by coherent X-ray diffraction. J. Synchrotron Radiat. 16(6), 796–802 (2009) A. Biermanns, A. Davydok, H. Paetzelt, A. Diaz, V. Gottschalch, T.H. Metzger, U. Pietsch, Individual GaAs nanorods imaged by coherent X-ray diffraction. J. Synchrotron Radiat. 16(6), 796–802 (2009)
176.
Zurück zum Zitat M. Köhl, Suggested to include both time- and heigth-dependence in the general expression of the contributions to radial growth. Private Communication (2017) M. Köhl, Suggested to include both time- and heigth-dependence in the general expression of the contributions to radial growth. Private Communication (2017)
177.
Zurück zum Zitat H. Kuepers, R.B. Lewis, A. Tahraoui, M. Matalla, O. Krueger, F. Bastiman, H. Riechert, L. Geelhaar, Diameter evolution of selective area grown Ga-assisted GaAs nanowires. Nano Res. 11(5), 2885–2893 (2018) H. Kuepers, R.B. Lewis, A. Tahraoui, M. Matalla, O. Krueger, F. Bastiman, H. Riechert, L. Geelhaar, Diameter evolution of selective area grown Ga-assisted GaAs nanowires. Nano Res. 11(5), 2885–2893 (2018)
178.
Zurück zum Zitat K.W. Schwarz, J. Tersoff, From droplets to nanowires: dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 102, 206101 (2009). MayCrossRef K.W. Schwarz, J. Tersoff, From droplets to nanowires: dynamics of vapor-liquid-solid growth. Phys. Rev. Lett. 102, 206101 (2009). MayCrossRef
179.
Zurück zum Zitat M. Köhl, Proposed to express the droplet shape time-dependently introducing a fermi-function. Private Communication (2017) M. Köhl, Proposed to express the droplet shape time-dependently introducing a fermi-function. Private Communication (2017)
180.
Zurück zum Zitat M. López, Y. Nomura, Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)—(110) facet structures. J. Cryst. Growth 150(Part 1), 68–72 (1995) M. López, Y. Nomura, Surface diffusion length of Ga adatoms in molecular-beam epitaxy on GaAs (100)—(110) facet structures. J. Cryst. Growth 150(Part 1), 68–72 (1995)
181.
Zurück zum Zitat M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13(1), 91–96 (2013) M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13(1), 91–96 (2013)
182.
Zurück zum Zitat T. Rieger, S. Heiderich, S. Lenk, M.I. Lepsa, D. Grützmacher, Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer. J. Cryst. Growth 353(1), 39–46 (2012) T. Rieger, S. Heiderich, S. Lenk, M.I. Lepsa, D. Grützmacher, Ga-assisted MBE growth of GaAs nanowires using thin HSQ layer. J. Cryst. Growth 353(1), 39–46 (2012)
183.
Zurück zum Zitat M. Heiss, Y. Fontana, A. Gustafsson, G. Wuest, C. Magen, D.D. O’Regan, J.W. Luo, B. Ketterer, S. Conesa-Boj, A.V. Kuhlmann, J. Houel, E. Russo-Averchi, J.R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R.J. Warburton, A. Fontcuberta i Morral, Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12(5), 439–444 (2013) M. Heiss, Y. Fontana, A. Gustafsson, G. Wuest, C. Magen, D.D. O’Regan, J.W. Luo, B. Ketterer, S. Conesa-Boj, A.V. Kuhlmann, J. Houel, E. Russo-Averchi, J.R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R.J. Warburton, A. Fontcuberta i Morral, Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12(5), 439–444 (2013)
184.
Zurück zum Zitat C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A.W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M.L. Povinelli, C. Zhou, P.D. Dapkus, S.B. Cronin, Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12(9), 4484–4489 (2012) C.-C. Chang, C.-Y. Chi, M. Yao, N. Huang, C.-C. Chen, J. Theiss, A.W. Bushmaker, S. LaLumondiere, T.-W. Yeh, M.L. Povinelli, C. Zhou, P.D. Dapkus, S.B. Cronin, Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 12(9), 4484–4489 (2012)
185.
Zurück zum Zitat N. Jiang, Q. Gao, P. Parkinson, J. Wong-Leung, S. Mokkapati, S. Breuer, H.H. Tan, C.L. Zheng, J. Etheridge, C. Jagadish, Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. Nano Lett. 13(11), 5135–5140 (2013) N. Jiang, Q. Gao, P. Parkinson, J. Wong-Leung, S. Mokkapati, S. Breuer, H.H. Tan, C.L. Zheng, J. Etheridge, C. Jagadish, Enhanced minority carrier lifetimes in GaAs/AlGaAs core-shell nanowires through shell growth optimization. Nano Lett. 13(11), 5135–5140 (2013)
186.
Zurück zum Zitat A. Biermanns, T. Rieger, G. Bussone, U. Pietsch, D. Gruetzmacher, M.I. Lepsa, Axial strain in gaas/inas core-shell nanowires. Appl. Phys. Lett. 102(4) (2013) A. Biermanns, T. Rieger, G. Bussone, U. Pietsch, D. Gruetzmacher, M.I. Lepsa, Axial strain in gaas/inas core-shell nanowires. Appl. Phys. Lett. 102(4) (2013)
187.
Zurück zum Zitat R.B. Lewis, L. Nicolai, H. Kuepers, M. Ramsteiner, A. Trampert, L. Geelhaar, Anomalous strain relaxation in core-shell nanowire heterostructures via simultaneous coherent and incoherent growth. Nano Lett. 17(1), 136–142 (2017) R.B. Lewis, L. Nicolai, H. Kuepers, M. Ramsteiner, A. Trampert, L. Geelhaar, Anomalous strain relaxation in core-shell nanowire heterostructures via simultaneous coherent and incoherent growth. Nano Lett. 17(1), 136–142 (2017)
188.
Zurück zum Zitat T. Rieger, P. Zellekens, N. Demarina, A. Al Hassan, F.J. Hackemueller, H. Lueth, U. Pietsch, T. Schaepers, D. Gruetzmacher, M.I. Lepsa, Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires. Nanoscale 9(46), 18392–18401 (2017) T. Rieger, P. Zellekens, N. Demarina, A. Al Hassan, F.J. Hackemueller, H. Lueth, U. Pietsch, T. Schaepers, D. Gruetzmacher, M.I. Lepsa, Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires. Nanoscale 9(46), 18392–18401 (2017)
189.
Zurück zum Zitat F. Glas, G. Patriarche, J.C. Harmand, Growth, structure and phase transitions of epitaxial nanowires of III–V semiconductors. J. Phys.: Conf. Ser. 209, 012002 (2010) F. Glas, G. Patriarche, J.C. Harmand, Growth, structure and phase transitions of epitaxial nanowires of III–V semiconductors. J. Phys.: Conf. Ser. 209, 012002 (2010)
190.
Zurück zum Zitat M. Paladugu, J. Zou, Y.N. Guo, X. Zhang, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, Evolution of wurtzite structured GaAs shells around InAs nanowire cores. Nanoscale Res. Lett. 4(8), 846–849 (2009) M. Paladugu, J. Zou, Y.N. Guo, X. Zhang, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, Evolution of wurtzite structured GaAs shells around InAs nanowire cores. Nanoscale Res. Lett. 4(8), 846–849 (2009)
191.
Zurück zum Zitat L. Namazi, L. Gren, M. Nilsson, M. Garbrecht, C. Thelander, R.R. Zamani, K.A. Dick, Realization of wurtzite GaSb using InAs nanowire templates. Adv. Funct. Mater. 28(28) (2018) L. Namazi, L. Gren, M. Nilsson, M. Garbrecht, C. Thelander, R.R. Zamani, K.A. Dick, Realization of wurtzite GaSb using InAs nanowire templates. Adv. Funct. Mater. 28(28) (2018)
192.
Zurück zum Zitat R.E. Algra, M. Hocevar, M.A. Verheijen, I. Zardo, G.G.W. Immink, W.J.P. van Enckevort, G. Abstreiter, L.P. Kouwenhoven, E. Vlieg, E.P.A.M. Bakkers, Crystal structure transfer in core/shell nanowires. Nano Lett. 11(4), 1690–1694 (2011) R.E. Algra, M. Hocevar, M.A. Verheijen, I. Zardo, G.G.W. Immink, W.J.P. van Enckevort, G. Abstreiter, L.P. Kouwenhoven, E. Vlieg, E.P.A.M. Bakkers, Crystal structure transfer in core/shell nanowires. Nano Lett. 11(4), 1690–1694 (2011)
193.
Zurück zum Zitat G. Patriarche, F. Glas, M. Tchernycheva, C. Sartel, L. Largeau, J.-C. Harmand, G.E. Cirlin, Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying. Nano Lett. 8(6), 1638–1643 (2008) G. Patriarche, F. Glas, M. Tchernycheva, C. Sartel, L. Largeau, J.-C. Harmand, G.E. Cirlin, Wurtzite to zinc blende phase transition in GaAs nanowires induced by epitaxial burying. Nano Lett. 8(6), 1638–1643 (2008)
194.
Zurück zum Zitat K.W. Ng, W.S. Ko, F. Lu, C.J. Chang-Hasnain, Metastable growth of pure wurtzite InGaAs microstructures. Nano Lett. 14(8), 4757–4762 (2014) K.W. Ng, W.S. Ko, F. Lu, C.J. Chang-Hasnain, Metastable growth of pure wurtzite InGaAs microstructures. Nano Lett. 14(8), 4757–4762 (2014)
195.
Zurück zum Zitat J. Wallentin, D. Jacobsson, M. Osterhoff, M.T. Borgström, T. Salditt, Bending and twisting lattice tilt in strained core-shell nanowires revealed by nanofocused X-ray diffraction. Nano Lett. 17(7), 4143–4150 (2017)CrossRef J. Wallentin, D. Jacobsson, M. Osterhoff, M.T. Borgström, T. Salditt, Bending and twisting lattice tilt in strained core-shell nanowires revealed by nanofocused X-ray diffraction. Nano Lett. 17(7), 4143–4150 (2017)CrossRef
196.
Zurück zum Zitat P. Mohan, J. Motohisa, T. Fukui, Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires. Appl. Phys. Lett. 88(1) (2006) P. Mohan, J. Motohisa, T. Fukui, Realization of conductive InAs nanotubes based on lattice-mismatched InP/InAs core-shell nanowires. Appl. Phys. Lett. 88(1) (2006)
197.
Zurück zum Zitat H. Küpers, Growth and properties of GaAs/(In,Ga)As core-shell nanowire arrays on Si. Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2018 H. Küpers, Growth and properties of GaAs/(In,Ga)As core-shell nanowire arrays on Si. Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2018
198.
Zurück zum Zitat R.B. Lewis, P. Corfdir, H. Kuepers, T. Flissikowski, O. Brandt, L. Geelhaar, Nanowires bending over backward from strain partitioning in asymmetric core-shell heterostructures. Nano Lett. 18(4), 2343–2350 (2018) R.B. Lewis, P. Corfdir, H. Kuepers, T. Flissikowski, O. Brandt, L. Geelhaar, Nanowires bending over backward from strain partitioning in asymmetric core-shell heterostructures. Nano Lett. 18(4), 2343–2350 (2018)
199.
Zurück zum Zitat N. Skold, J.B. Wagner, G. Karlsson, T. Hernan, W. Seifert, M.-E. Pistol, L. Samuelson, Phase segregation in AllnP shells on GaAs nanowires. Nano Lett. 6(12), 2743–2747 (2006) N. Skold, J.B. Wagner, G. Karlsson, T. Hernan, W. Seifert, M.-E. Pistol, L. Samuelson, Phase segregation in AllnP shells on GaAs nanowires. Nano Lett. 6(12), 2743–2747 (2006)
200.
Zurück zum Zitat A. Al Hassan, R.B. Lewis, H. Küpers, W.-H. Lin, D. Bahrami, T. Krause, D. Salomon, A. Tahraoui, M. Hanke, L. Geelhaar, U. Pietsch, Determination of indium content of gaas/(in,ga)as/(gaas) core-shell(-shell) nanowires by x-ray diffraction and nano x-ray fluorescence. Phys. Rev. Mater. 2, 014604 (2018) A. Al Hassan, R.B. Lewis, H. Küpers, W.-H. Lin, D. Bahrami, T. Krause, D. Salomon, A. Tahraoui, M. Hanke, L. Geelhaar, U. Pietsch, Determination of indium content of gaas/(in,ga)as/(gaas) core-shell(-shell) nanowires by x-ray diffraction and nano x-ray fluorescence. Phys. Rev. Mater. 2, 014604 (2018)
201.
Zurück zum Zitat A. Davtyan, T. Krause, D. Kriegner, A. Al Hassan, D. Bahrami, S.M.M. Kashani, R.B. Lewis, H. Küpers, A. Tahraoui, L. Geelhaar, M. Hanke, S.J. Leake, O. Loffeld, U. Pietsch, Threefold rotational symmetry in hexagonally shaped core—shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging. J. Appl. Crystallogr. 50(3), 673–680 (2017) A. Davtyan, T. Krause, D. Kriegner, A. Al Hassan, D. Bahrami, S.M.M. Kashani, R.B. Lewis, H. Küpers, A. Tahraoui, L. Geelhaar, M. Hanke, S.J. Leake, O. Loffeld, U. Pietsch, Threefold rotational symmetry in hexagonally shaped core—shell (In,Ga)As/GaAs nanowires revealed by coherent X-ray diffraction imaging. J. Appl. Crystallogr. 50(3), 673–680 (2017)
202.
Zurück zum Zitat M. Heurlin, T. Stankevic, S. Mickevicius, S. Yngman, D. Lindgren, A. Mikkelsen, R. Feidenhans’l, M.T. Borgstrom, L. Samuelson, Structural properties of wurtzite InP-InGaAs nanowire core-shell heterostructures. Nano Lett. 15(4), 2462–2467 (2015) M. Heurlin, T. Stankevic, S. Mickevicius, S. Yngman, D. Lindgren, A. Mikkelsen, R. Feidenhans’l, M.T. Borgstrom, L. Samuelson, Structural properties of wurtzite InP-InGaAs nanowire core-shell heterostructures. Nano Lett. 15(4), 2462–2467 (2015)
203.
Zurück zum Zitat L. Feigl, M. Al Humaidi, J. Jakob, P. Schroth, S.M.M. Kashani, A. Davtyan, A. Al Hassan, D. Bahrami, U. Pietsch, T. Baumbach, in-situ X-ray analysis of misfit strain and curvature of bent polytypic (In,Ga)As core-shell nanowires. Manuscript in preparation. Expected publishing year 2021 L. Feigl, M. Al Humaidi, J. Jakob, P. Schroth, S.M.M. Kashani, A. Davtyan, A. Al Hassan, D. Bahrami, U. Pietsch, T. Baumbach, in-situ X-ray analysis of misfit strain and curvature of bent polytypic (In,Ga)As core-shell nanowires. Manuscript in preparation. Expected publishing year 2021
204.
Zurück zum Zitat L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik 5(1), 17–26 (1921). JanCrossRef L. Vegard, Die konstitution der mischkristalle und die raumfüllung der atome. Zeitschrift für Physik 5(1), 17–26 (1921). JanCrossRef
206.
Zurück zum Zitat B. Andreas, D. Anton, P. Hendrik, D. Ana, G. Volker, M.T. Hartmut, P. Ullrich, Individual gaas nanorods imaged by coherent x-ray diffraction. J. Synchrotron Radiat. 16(6), 796–802 (2009) B. Andreas, D. Anton, P. Hendrik, D. Ana, G. Volker, M.T. Hartmut, P. Ullrich, Individual gaas nanorods imaged by coherent x-ray diffraction. J. Synchrotron Radiat. 16(6), 796–802 (2009)
207.
Zurück zum Zitat J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982). AugCrossRef J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982). AugCrossRef
208.
Zurück zum Zitat S.O. Hruszkewycz, M. Allain, M.V. Holt, C.E. Murray, J.R. Holt, P.H. Fuoss, V. Chamard. High-resolution three-dimensional structural microscopy by single-angle bragg ptychography. Nat. Mater. 16, 244 (2016) S.O. Hruszkewycz, M. Allain, M.V. Holt, C.E. Murray, J.R. Holt, P.H. Fuoss, V. Chamard. High-resolution three-dimensional structural microscopy by single-angle bragg ptychography. Nat. Mater. 16, 244 (2016)
209.
Zurück zum Zitat A. Davtyan, A. Biermanns, O. Loffeld, U. Pietsch, Determination of the stacking fault density in highly defective single gaas nanowires by means of coherent diffraction imaging. New J. Phys. 18(6), 063021 (2016)CrossRef A. Davtyan, A. Biermanns, O. Loffeld, U. Pietsch, Determination of the stacking fault density in highly defective single gaas nanowires by means of coherent diffraction imaging. New J. Phys. 18(6), 063021 (2016)CrossRef
210.
Zurück zum Zitat A. Diaz, C. Mocuta, J. Stangl, B. Mandl, C. David, J. Vila-Comamala, V. Chamard, T.H. Metzger, G. Bauer, Coherent diffraction imaging of a single epitaxial inas nanowire using a focused x-ray beam. Phys. Rev. B 79, 125324 (2009). MarCrossRef A. Diaz, C. Mocuta, J. Stangl, B. Mandl, C. David, J. Vila-Comamala, V. Chamard, T.H. Metzger, G. Bauer, Coherent diffraction imaging of a single epitaxial inas nanowire using a focused x-ray beam. Phys. Rev. B 79, 125324 (2009). MarCrossRef
211.
Zurück zum Zitat S. Labat, M.-I. Richard, M. Dupraz, M. Gailhanou, G. Beutier, M. Verdier, F. Mastropietro, T.W. Cornelius, T.U. Schülli, J. Eymery, O. Thomas, Inversion domain boundaries in gan wires revealed by coherent bragg imaging. ACS Nano 9(9), 9210–9216 (2015)CrossRef S. Labat, M.-I. Richard, M. Dupraz, M. Gailhanou, G. Beutier, M. Verdier, F. Mastropietro, T.W. Cornelius, T.U. Schülli, J. Eymery, O. Thomas, Inversion domain boundaries in gan wires revealed by coherent bragg imaging. ACS Nano 9(9), 9210–9216 (2015)CrossRef
212.
Zurück zum Zitat D. Dzhigaev, A. Shabalin, T. Stankevič, U. Lorenz, R.P. Kurta, F. Seiboth, J. Wallentin, A. Singer, S. Lazarev, O.M. Yefanov, M. Borgström, M.N. Strikhanov, L. Samuelson, G. Falkenberg, C.G. Schroer, A. Mikkelsen, R. Feidenhans’l, I.A. Vartanyants, Bragg coherent x-ray diffractive imaging of a single indium phosphide nanowire. J. Optics 18(6), 064007 (2016)CrossRef D. Dzhigaev, A. Shabalin, T. Stankevič, U. Lorenz, R.P. Kurta, F. Seiboth, J. Wallentin, A. Singer, S. Lazarev, O.M. Yefanov, M. Borgström, M.N. Strikhanov, L. Samuelson, G. Falkenberg, C.G. Schroer, A. Mikkelsen, R. Feidenhans’l, I.A. Vartanyants, Bragg coherent x-ray diffractive imaging of a single indium phosphide nanowire. J. Optics 18(6), 064007 (2016)CrossRef
213.
Zurück zum Zitat T. Stankevič, D. Dzhigaev, Z. Bi, M. Rose, A. Shabalin, J. Reinhardt, A. Mikkelsen, L. Samuelson, G. Falkenberg, I.A. Vartanyants, R. Feidenhans’l, Strain mapping in an InGaN/GaN nanowire using a nano-focused x-ray beam. Appl. Phys. Lett. 107(10), 103101 (2015)CrossRef T. Stankevič, D. Dzhigaev, Z. Bi, M. Rose, A. Shabalin, J. Reinhardt, A. Mikkelsen, L. Samuelson, G. Falkenberg, I.A. Vartanyants, R. Feidenhans’l, Strain mapping in an InGaN/GaN nanowire using a nano-focused x-ray beam. Appl. Phys. Lett. 107(10), 103101 (2015)CrossRef
214.
Zurück zum Zitat S. Lazarev, D. Dzhigaev, Z. Bi, A. Nowzari, Y.Y. Kim, M. Rose, I.A. Zaluzhnyy, O.Y. Gorobtsov, A.V. Zozulya, F. Lenrick, A. Gustafsson, A. Mikkelsen, M. Sprung, L. Samuelson, I.A. Vartanyants, Structural changes in a single gan nanowire under applied voltage bias. Nano Lett. 18(9), 5446–5452 (2018) (PMID: 30033733) S. Lazarev, D. Dzhigaev, Z. Bi, A. Nowzari, Y.Y. Kim, M. Rose, I.A. Zaluzhnyy, O.Y. Gorobtsov, A.V. Zozulya, F. Lenrick, A. Gustafsson, A. Mikkelsen, M. Sprung, L. Samuelson, I.A. Vartanyants, Structural changes in a single gan nanowire under applied voltage bias. Nano Lett. 18(9), 5446–5452 (2018) (PMID: 30033733)
215.
Zurück zum Zitat G. Bussone, H. Schäfer-Eberwein, E. Dimakis, A. Biermanns, D. Carbone, A. Tahraoui, L. Geelhaar, P.H. Bolívar, T.U. Schülli, U. Pietsch, Correlation of electrical and structural properties of single as-grown gaas nanowires on si (111) substrates. Nano Lett. 15(2), 981–989 (2015) G. Bussone, H. Schäfer-Eberwein, E. Dimakis, A. Biermanns, D. Carbone, A. Tahraoui, L. Geelhaar, P.H. Bolívar, T.U. Schülli, U. Pietsch, Correlation of electrical and structural properties of single as-grown gaas nanowires on si (111) substrates. Nano Lett. 15(2), 981–989 (2015)
216.
Zurück zum Zitat D. Dzhigaev, T. Stankevič, Z. Bi, S. Lazarev, M. Rose, A. Shabalin, J. Reinhardt, A. Mikkelsen, L. Samuelson, G. Falkenberg, R. Feidenhans’l, I.A. Vartanyants, X-ray bragg ptychography on a single InGaN/GaN core-shell nanowire. ACS Nano 11(7), 6605–6611 (2017). PMID: 28264155CrossRef D. Dzhigaev, T. Stankevič, Z. Bi, S. Lazarev, M. Rose, A. Shabalin, J. Reinhardt, A. Mikkelsen, L. Samuelson, G. Falkenberg, R. Feidenhans’l, I.A. Vartanyants, X-ray bragg ptychography on a single InGaN/GaN core-shell nanowire. ACS Nano 11(7), 6605–6611 (2017). PMID: 28264155CrossRef
217.
Zurück zum Zitat M.O. Hill, I. Calvo-Almazan, M. Allain, M.V. Holt, A. Ulvestad, J. Treu, G. Koblmüller, C. Huang, X. Huang, H. Yan, E. Nazaretski, Y.S. Chu, G.B. Stephenson, V. Chamard, L.J. Lauhon, S.O. Hruszkewycz, Measuring three-dimensional strain and structural defects in a single InGaAs nanowire using coherent X-ray multiangle Bragg projection ptychography. Nano Lett. 18(2), 811–819 (2018) M.O. Hill, I. Calvo-Almazan, M. Allain, M.V. Holt, A. Ulvestad, J. Treu, G. Koblmüller, C. Huang, X. Huang, H. Yan, E. Nazaretski, Y.S. Chu, G.B. Stephenson, V. Chamard, L.J. Lauhon, S.O. Hruszkewycz, Measuring three-dimensional strain and structural defects in a single InGaAs nanowire using coherent X-ray multiangle Bragg projection ptychography. Nano Lett. 18(2), 811–819 (2018)
218.
Zurück zum Zitat A. Davtyan, V. Favre-Nicolin, R.B. Lewis, H. Küpers, L. Geelhaar, D. Kriegner, D. Bahrami, A. Al-Hassan, G. Chahine, O. Loffeld, U. Pietsch, Coherent X-ray diffraction imaging meets ptychography to study core-shell-shell nanowires. MRS Adv. 3(39), 2317–2322 (2018) A. Davtyan, V. Favre-Nicolin, R.B. Lewis, H. Küpers, L. Geelhaar, D. Kriegner, D. Bahrami, A. Al-Hassan, G. Chahine, O. Loffeld, U. Pietsch, Coherent X-ray diffraction imaging meets ptychography to study core-shell-shell nanowires. MRS Adv. 3(39), 2317–2322 (2018)
219.
Zurück zum Zitat S.M.M. Kashani, D. Kriegner, D. Bahrami, J. Vogel, A. Davtyan, L. Feigl, P. Schroth, J. Jakob, T. Baumbach, U. Pietsch, X-ray diffraction analysis of the angular stability of self-catalyzed GaAs nanowires for future applications in solar-light-harvesting and light-emitting devices. Appl. Nano Mater. 2, 689–699 (2019)CrossRef S.M.M. Kashani, D. Kriegner, D. Bahrami, J. Vogel, A. Davtyan, L. Feigl, P. Schroth, J. Jakob, T. Baumbach, U. Pietsch, X-ray diffraction analysis of the angular stability of self-catalyzed GaAs nanowires for future applications in solar-light-harvesting and light-emitting devices. Appl. Nano Mater. 2, 689–699 (2019)CrossRef
220.
Zurück zum Zitat S.J. Gibson, R.R. LaPierre, Model of patterned self-assisted nanowire growth. Nanotechnology 25(41), 415304 (2014) S.J. Gibson, R.R. LaPierre, Model of patterned self-assisted nanowire growth. Nanotechnology 25(41), 415304 (2014)
221.
Zurück zum Zitat D. Rudolph, L. Schweickert, S. Morkötter, B. Loitsch, S. Hertenberger, J. Becker, M. Bichler, G. Abstreiter, J.J. Finley, G. Koblmüller, Effect of interwire separation on growth kinetics and properties of site-selective gaas nanowires. Appl. Phys. Lett. 105(3), 033111 (2014)CrossRef D. Rudolph, L. Schweickert, S. Morkötter, B. Loitsch, S. Hertenberger, J. Becker, M. Bichler, G. Abstreiter, J.J. Finley, G. Koblmüller, Effect of interwire separation on growth kinetics and properties of site-selective gaas nanowires. Appl. Phys. Lett. 105(3), 033111 (2014)CrossRef
222.
Zurück zum Zitat P. Schroth, M. Al Humaidi, L. Feigl, J. Jakob, A. Al Hassan, A. Davtyan, H. Küpers, A. Tahraoui, L. Geelhaar, U. Pietsch, T. Baumbach, Impact of the shadowing effect on the crystal structure of patterned self-catalyzed GaAs nanowires. Nano Lett. 19, 4263–4271 (2019) P. Schroth, M. Al Humaidi, L. Feigl, J. Jakob, A. Al Hassan, A. Davtyan, H. Küpers, A. Tahraoui, L. Geelhaar, U. Pietsch, T. Baumbach, Impact of the shadowing effect on the crystal structure of patterned self-catalyzed GaAs nanowires. Nano Lett. 19, 4263–4271 (2019)
223.
Zurück zum Zitat B. Bauer, A. Rudolph, M. Soda, A. Fontcuberta i Morral, J. Zweck, D. Schuh, E. Reiger, Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 21(43) (2010) B. Bauer, A. Rudolph, M. Soda, A. Fontcuberta i Morral, J. Zweck, D. Schuh, E. Reiger, Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 21(43) (2010)
224.
Zurück zum Zitat S. Plissard, K.A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, P. Caroff, Gold-free growth of GaAs nanowires on silicon: arrays and polytypism. Nanotechnology 21(38) (2010) S. Plissard, K.A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, P. Caroff, Gold-free growth of GaAs nanowires on silicon: arrays and polytypism. Nanotechnology 21(38) (2010)
225.
Zurück zum Zitat H. Küpers, Manuscript in preparation. Expected publishing year 2019 H. Küpers, Manuscript in preparation. Expected publishing year 2019
226.
Zurück zum Zitat J. Vogel, Limits for x-ray nanowire diffraction with synchrotron radiation. Master’s thesis, Universität Siegen, 2016 J. Vogel, Limits for x-ray nanowire diffraction with synchrotron radiation. Master’s thesis, Universität Siegen, 2016
Metadaten
Titel
X-ray Methods for Structural Characterization of III-V Nanowires: From an ex-situ Ensemble Average to Time-resolved Nano-diffraction
verfasst von
Ludwig Feigl
Philipp Schroth
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9050-4_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.