Skip to main content

2020 | OriginalPaper | Buchkapitel

5. Yielding, Fatigue, and Creep Response of Metal Foams

verfasst von : Dr. Dipen Kumar Rajak, Prof. Manoj Gupta

Erschienen in: An Insight Into Metal Based Foams

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this chapter, yielding, fatigue, and creep are introduced and fundamentally described for metal foams. Metallic foams deforms differently from solid metals. This chapter highlights and describes yielding, fatigue, and creep behavior of metallic foams. The difference between yielding and plastic response of metal foams and the base metal is explained. Similarly, fatigue response of metallic foam is explained using constitutive laws placing emphasis on strength degradability under cycling loading. The chapter also addresses the creep response of metal foams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banhart, J. (Ed.). (1999). Metal foams and porous metal structures. Verl: MIT Publ. Banhart, J. (Ed.). (1999). Metal foams and porous metal structures. Verl: MIT Publ.
2.
Zurück zum Zitat Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams: A design guide. Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., & Wadley, H. N. G. (2000). Metal foams: A design guide.
3.
Zurück zum Zitat Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.CrossRef Davies, G. J., & Zhen, S. (1983). Metallic foams: Their production, properties and applications. Journal of Materials Science, 18(7), 1899–1911.CrossRef
4.
Zurück zum Zitat Deshpande, V. S., & Fleck, N. A. (1999). Multi-axial yield of aluminium alloy foam,. 8. Deshpande, V. S., & Fleck, N. A. (1999). Multi-axial yield of aluminium alloy foam,. 8.
5.
Zurück zum Zitat Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283.CrossRef Deshpande, V. S., & Fleck, N. A. (2000). Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 48(6–7), 1253–1283.CrossRef
6.
Zurück zum Zitat Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press. Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: Structure and properties (2nd ed.). Cambridge University Press.
7.
Zurück zum Zitat Gioux, G., McCormack, T. M., & Gibson, L. J. (2000). Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 42(6), 1097–1117.CrossRef Gioux, G., McCormack, T. M., & Gibson, L. J. (2000). Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences, 42(6), 1097–1117.CrossRef
8.
Zurück zum Zitat Miller, R. E. (2000). A continuum plasticity model for the constitutive and indentation behavior of foamed metals. International Journal of Mechanical Sciences, 42(4), 729–754.CrossRef Miller, R. E. (2000). A continuum plasticity model for the constitutive and indentation behavior of foamed metals. International Journal of Mechanical Sciences, 42(4), 729–754.CrossRef
9.
Zurück zum Zitat Collins, J. A. (1980). Failure of materials in mechanical design. New York: Wiley. Collins, J. A. (1980). Failure of materials in mechanical design. New York: Wiley.
10.
Zurück zum Zitat Khan, A. S., & Huang, S. (1995). Continuum theory of plasticity. New York: Wiley. Khan, A. S., & Huang, S. (1995). Continuum theory of plasticity. New York: Wiley.
11.
Zurück zum Zitat Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2016). Technical overview of aluminum alloy foam, 19. Rajak, D. K., Kumaraswamidhas, L. A., & Das, S. (2016). Technical overview of aluminum alloy foam, 19.
12.
Zurück zum Zitat Motz, C., & Pippan, R. (2001). Deformation behaviour of closed-cell aluminium foams in tension. Acta Materialia, 49(13), 2463–2470.CrossRef Motz, C., & Pippan, R. (2001). Deformation behaviour of closed-cell aluminium foams in tension. Acta Materialia, 49(13), 2463–2470.CrossRef
13.
Zurück zum Zitat Peroni, L., Avalle, M., & Peroni, M. (2008). The mechanical behaviour of aluminium foam structures in different loading conditions. International Journal of Impact Engineering, 35(7), 644–658.CrossRef Peroni, L., Avalle, M., & Peroni, M. (2008). The mechanical behaviour of aluminium foam structures in different loading conditions. International Journal of Impact Engineering, 35(7), 644–658.CrossRef
14.
Zurück zum Zitat Rajak, D. K., Mahajan, N. N., & Emanoil, L. (2019). Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. Journal of Alloys and Compounds, 775, 675–689.CrossRef Rajak, D. K., Mahajan, N. N., & Emanoil, L. (2019). Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate. Journal of Alloys and Compounds, 775, 675–689.CrossRef
15.
Zurück zum Zitat Rajak, D. K., Kumaraswamidhas, L. A., Das, S., & Senthil Kumaran, S. (2016). Characterization and analysis of compression load behavior of aluminium alloy foam under the diverse strain rate. Journal of Alloys and Compounds, 656, 218–225.CrossRef Rajak, D. K., Kumaraswamidhas, L. A., Das, S., & Senthil Kumaran, S. (2016). Characterization and analysis of compression load behavior of aluminium alloy foam under the diverse strain rate. Journal of Alloys and Compounds, 656, 218–225.CrossRef
16.
Zurück zum Zitat Zettl, B., Mayer, H., & Stanzl-Tschegg, S. E. (2001). Fatigue properties of Al-1 Mg-0.6Si foam at low and ultrasonic frequencies. International Journal of Fatigue, 23, 565–573.CrossRef Zettl, B., Mayer, H., & Stanzl-Tschegg, S. E. (2001). Fatigue properties of Al-1 Mg-0.6Si foam at low and ultrasonic frequencies. International Journal of Fatigue, 23, 565–573.CrossRef
17.
Zurück zum Zitat Ashby, M. F., & Jones, D. R. H. (1997). Engineering materials, 1 (2nd ed.). Oxford: Butterworth-Heinemann. Ashby, M. F., & Jones, D. R. H. (1997). Engineering materials, 1 (2nd ed.). Oxford: Butterworth-Heinemann.
18.
Zurück zum Zitat Sugimura, Y., Rabiei, A., Evans, A. G., Harte, A. M., & Fleck, N. A. (1999). Compression fatigue of a cellular Al alloy. Materials Science and Engineering A, 269(1–2), 38–48.CrossRef Sugimura, Y., Rabiei, A., Evans, A. G., Harte, A. M., & Fleck, N. A. (1999). Compression fatigue of a cellular Al alloy. Materials Science and Engineering A, 269(1–2), 38–48.CrossRef
19.
Zurück zum Zitat Vendra, L., Neville, B., & Rabiei, A. (2009). Fatigue in aluminum–steel and steel–steel composite foams. Materials Science and Engineering A, 517(1–2), 146–153.CrossRef Vendra, L., Neville, B., & Rabiei, A. (2009). Fatigue in aluminum–steel and steel–steel composite foams. Materials Science and Engineering A, 517(1–2), 146–153.CrossRef
20.
Zurück zum Zitat Fleck, N. A., Kang, K. J., & Ashby, M. F. (1994). Overview no. 112: The cyclic properties of engineering materials. Acta Metallurgica et Materialia, 42(2), 365–381. Fleck, N. A., Kang, K. J., & Ashby, M. F. (1994). Overview no. 112: The cyclic properties of engineering materials. Acta Metallurgica et Materialia, 42(2), 365–381.
21.
Zurück zum Zitat Fuchs, H. O., & Stephen, R. I. (1980). Metal Fatigue in Engineering (p. 102). New York: Wiley. Fuchs, H. O., & Stephen, R. I. (1980). Metal Fatigue in Engineering (p. 102). New York: Wiley.
22.
Zurück zum Zitat Harte, A.-M., Fleck, N. A., & Ashby, M. F. (1999). Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Materialia, 47(8), 2511–2524.CrossRef Harte, A.-M., Fleck, N. A., & Ashby, M. F. (1999). Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Materialia, 47(8), 2511–2524.CrossRef
23.
Zurück zum Zitat McCullough, & Fleck. (2000). The stress-life fatigue behavior of aluminium alloy foams. Fracture of Engineering Materials and Structures, 23(3), 199–208. McCullough, & Fleck. (2000). The stress-life fatigue behavior of aluminium alloy foams. Fracture of Engineering Materials and Structures, 23(3), 199–208.
24.
Zurück zum Zitat Olurin, B. (1999). Fatigue of an aluminium alloy foam, 7. Olurin, B. (1999). Fatigue of an aluminium alloy foam, 7.
25.
Zurück zum Zitat Schwartz, D. S. (1998). Porous AND Cellular materials for structural applications: Symposium held April 13–15, 1998, San Francisco, California, U.S.A. Materials Research Society. Schwartz, D. S. (1998). Porous AND Cellular materials for structural applications: Symposium held April 13–15, 1998, San Francisco, California, U.S.A. Materials Research Society.
26.
Zurück zum Zitat Bao, G., & Suo, Z. (1992). Remarks on Crack-bridging concepts. Applied Mechanics Reviews, 45(8), 355–366.CrossRef Bao, G., & Suo, Z. (1992). Remarks on Crack-bridging concepts. Applied Mechanics Reviews, 45(8), 355–366.CrossRef
27.
Zurück zum Zitat Suresh, S. (1992). Fatigue of materials (1st with corrections and exercises). Cambridge University Press. Suresh, S. (1992). Fatigue of materials (1st with corrections and exercises). Cambridge University Press.
28.
Zurück zum Zitat Bergara, A., Dorado, J. I., Martin-Meizoso, A., & Martínez-Esnaola, J. M. (2017). Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). International Journal of Fatigue, 103, 112–121.CrossRef Bergara, A., Dorado, J. I., Martin-Meizoso, A., & Martínez-Esnaola, J. M. (2017). Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). International Journal of Fatigue, 103, 112–121.CrossRef
29.
Zurück zum Zitat Banhart, J., & Brinkers, W. (1999). Fatigue behavior of aluminum foams. Journal of Materials Science Letters, 18(8), 617–619.CrossRef Banhart, J., & Brinkers, W. (1999). Fatigue behavior of aluminum foams. Journal of Materials Science Letters, 18(8), 617–619.CrossRef
30.
Zurück zum Zitat Veale, P. J. (2010). Investigation of the behavior of open cell aluminum foam. University of Massachusetts Amherst. Veale, P. J. (2010). Investigation of the behavior of open cell aluminum foam. University of Massachusetts Amherst.
31.
Zurück zum Zitat Kolluri, M., Mukherjee, M., Garcia-Moreno, F., Banhart, J., & Ramamurty, U. (2008). Fatigue of a laterally constrained closed cell aluminum foam. Acta Materialia, 56(5), 1114–1125.CrossRef Kolluri, M., Mukherjee, M., Garcia-Moreno, F., Banhart, J., & Ramamurty, U. (2008). Fatigue of a laterally constrained closed cell aluminum foam. Acta Materialia, 56(5), 1114–1125.CrossRef
33.
Zurück zum Zitat Evans, H. E. (1984). Mechanisms of creep fracture. Elsevier, Applied Science, London: Fracture mechanics. Evans, H. E. (1984). Mechanisms of creep fracture. Elsevier, Applied Science, London: Fracture mechanics.
34.
Zurück zum Zitat Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: Plasticity and creep of metals and ceramics. Elsevier Science Limited: Technology & Engineering. Frost, H. J., & Ashby, M. F. (1982). Deformation mechanism maps: Plasticity and creep of metals and ceramics. Elsevier Science Limited: Technology & Engineering.
35.
Zurück zum Zitat Anon. (2000). Design for creep with metal foams. In Metal foams, pp. 103–12. Elsevier. Anon. (2000). Design for creep with metal foams. In Metal foams, pp. 103–12. Elsevier.
36.
Zurück zum Zitat Burteau, A., Jean-Dominique, B., Yves, B., & Samuel, F. (2014). On the creep deformation of nickel foams under compression. Comptes Rendus Physique, 15(8–9), 705–718.CrossRef Burteau, A., Jean-Dominique, B., Yves, B., & Samuel, F. (2014). On the creep deformation of nickel foams under compression. Comptes Rendus Physique, 15(8–9), 705–718.CrossRef
37.
Zurück zum Zitat Andrews, E. W., Huang, J.-S., & Gibson, L. J. (1999). Creep behavior of a closed-cell aluminum foam. Acta Materialia, 47(10), 2927–2935.CrossRef Andrews, E. W., Huang, J.-S., & Gibson, L. J. (1999). Creep behavior of a closed-cell aluminum foam. Acta Materialia, 47(10), 2927–2935.CrossRef
38.
Zurück zum Zitat Couteau, O., & David, C. D. (2008). Creep of aluminum syntactic foams. Materials Science and Engineering A, 488(1–2), 573–579.CrossRef Couteau, O., & David, C. D. (2008). Creep of aluminum syntactic foams. Materials Science and Engineering A, 488(1–2), 573–579.CrossRef
39.
Zurück zum Zitat Diologent, F., Conde, Y., Goodall, R., & Mortensen, A. (2009). Microstructure, strength and creep of aluminium-nickel open cell foam. Philosophical Magazine, 89(13), 1121–1139.CrossRef Diologent, F., Conde, Y., Goodall, R., & Mortensen, A. (2009). Microstructure, strength and creep of aluminium-nickel open cell foam. Philosophical Magazine, 89(13), 1121–1139.CrossRef
40.
Zurück zum Zitat Haag, M., Wanner, A., Clemens, H., Zhang, P., Kraft, O., & Arzt, E. (2003). Creep of aluminum-based closed-cell foams. Metallurgical and Materials Transactions A, 34(12), 2809–2817.CrossRef Haag, M., Wanner, A., Clemens, H., Zhang, P., Kraft, O., & Arzt, E. (2003). Creep of aluminum-based closed-cell foams. Metallurgical and Materials Transactions A, 34(12), 2809–2817.CrossRef
Metadaten
Titel
Yielding, Fatigue, and Creep Response of Metal Foams
verfasst von
Dr. Dipen Kumar Rajak
Prof. Manoj Gupta
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-9069-6_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.